首页|基于深度学习LSTM的负荷预测方法

基于深度学习LSTM的负荷预测方法

扫码查看
电力负荷预测对系统安全稳定运行至关重要,但其随机性、波动性、周期性、数据量庞大等特征,传统的预测方法已无法保证其预测精度.本文首先分析电力负荷特征相关性因素,从而确定电力负荷预测的输入量,其次采用深度学习长短期记忆网络(LSTM)算法预测电力负荷,根据预测结果产生的误差再次采用LSTM算法预测电力负荷误差,二者结果叠加得到经过动态误差补偿的电力负荷预测结果.最后,以实测电力负荷数据为例进行验证,结果表明所提方法预测精度更高.
Load Forecasting Method Based on Deep Learning-LSTM
Power load forecasting is crucial for the safe and stable operation of the power system,but due to its randomness,volatility,periodicity,and large amount of data,traditional simple forecasting methods can no longer guarantee its prediction accuracy.In this paper,firstly,the correlation factors of power load characteristics are analyzed to determine the input amount of power load prediction,and then the deep learning Long Short-Term Memory Network (LSTM) algorithm is used to predict the power load,and the LSTM algorithm is used to predict the power load error according to the error generated by the prediction results.The results of the two are superimposed to obtain the power load prediction results with dynamic error compensation.Finally,the measured power load data in a certain area is used as an example for verification,and the results show that the proposed method has higher prediction accuracy.

Dynamic error compensationPower systemLoad forecastingLSTM

候文昌、支刚、邱印能、吴政声

展开 >

云南省电力设计院有限公司,云南 昆明 650051

昆明理工大学,云南 昆明 650500

动态误差补偿 电力系统 负荷预测 长短期记忆网络(LSTM)

2024

云南电力技术
云南省电机工程学会 云南电力试验研究院(集团)有限公司电力研究院

云南电力技术

影响因子:0.244
ISSN:1006-7345
年,卷(期):2024.52(6)