首页|基于深度哈希算法的变电图纸文本标签跨模态检索方法

基于深度哈希算法的变电图纸文本标签跨模态检索方法

扫码查看
传统的信息检索方法主要依赖于单一模态的数据处理,难以有效应对这种多模态数据的复杂性和异构性,如何高效地实现变电图纸与文本标签之间的跨模态检索,因此,现提出基于深度哈希算法的变电图纸文本标签跨模态检索方法.通过提取变电站图纸的文本元素,反映出它们在变电站的图纸中的具体位置信息,为后续的变电站图纸文本标签的跨模态检索奠定了坚实的基础,采用图卷积网络技术对被检索标签进行行深度特征提取,生成富含语义相关性的标签嵌入向量,并与对应的变电站图纸的文本进行检索预测.
Cross Modal Retrieval Method for Text Labels of Substation Drawings Based on Deep Hashing Algorithm
Traditional information retrieval methods mainly rely on single mode data processing,which is difficult to effectively deal with the complexity and heterogeneity of such multimodal data.How to efficiently achieve cross modal retrieval between substation drawings and text labels?Therefore,this paper proposes a cross modal retrieval method for text labels of substation drawings based on deep hash algorithm.By extracting text elements from substation drawings,their specific location information in the substation drawings is reflected,laying a solid foundation for cross modal retrieval of text labels in subsequent substation drawings.Graph convolutional network technology is used to extract row depth features from the retrieved labels,generate tag embedding vectors rich in semantic relevance,and perform retrieval prediction with the corresponding text of substation drawings.

Text TagsPower SystemSubstation DrawingsCross Modal RetrievalDeep Hashing Algorithm

杨禄清、朱阳灿、马利辉、钱颖、彭定充、赵国旗、施伟东

展开 >

云南电网有限责任公司保山供电局,云南 保山 678000

文本标签 电力系统 变电图纸 跨模态检索 深度哈希算法

2024

云南电力技术
云南省电机工程学会 云南电力试验研究院(集团)有限公司电力研究院

云南电力技术

影响因子:0.244
ISSN:1006-7345
年,卷(期):2024.52(6)