首页|集值映射的Michel-Penot方向导数与Michel-Penot次微分

集值映射的Michel-Penot方向导数与Michel-Penot次微分

Michel-Penot directional derivative and Michel-Penot subdifferentiation of set-valued mappings

扫码查看
采用标量化方法,研究集值映射的方向导数和次微分.借助Gerstewizt函数,给出了集值映射的Michel-Penot方向导数和Michel-Penot次微分的概念,研究了它们的性质,建立了它们的计算法则,并利用Michel-Penot次微分给出了无约束集值优化问题的优化条件.
The directional derivatives and subdifferentials of set-valued mappings are studied by scalarization approaches.With the help of the Gerstewizt function,the concepts of Michel-Penot directional derivatives and Michel-Penot subdifferentials of set-valued mappings are introduced.Their properties are studied and their calculus rules are established.As application,optimality conditions for unconstrained set-valued optimization problems are given by Michel-Penot subdifferentials.

Michel-Penot directional derivativeMichel-Penot subdifferentialset-valued mappingoptimality condition

黄辉、陈智勇

展开 >

云南大学数学与统计学院,云南昆明 650091

Michel-Penot方向导数 Michel-Penot次微分 集值映射 优化条件

国家自然科学基金

12061085

2024

云南大学学报(自然科学版)
云南大学

云南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.663
ISSN:0258-7971
年,卷(期):2024.46(5)