首页|基于注意力的融合模型预测脓毒症患者死亡率

基于注意力的融合模型预测脓毒症患者死亡率

Attention-based fusion model to predict mortality of sepsis patients

扫码查看
准确识别死亡风险较高的脓毒症(sepsis-3)患者对改善患者生存结局、辅助ICU医生医疗决策具有重要意义.然而传统机器学习方法需要复杂的特征工程,且不能充分利用患者医疗数据中高缺失的动态时序数据与稀疏的静态数据.针对ICU脓毒症患者死亡率预测的现有不足,设计了一种基于注意力机制的多输入融合学习模型,分别从高缺失率的动态时序数据和稀疏的静态数据中捕捉患者医疗记录时空维度上的患者特征并学习时空特征之间的相互作用关系.在MIMIC-Ⅲ数据集上提取了 10567名符合sepsis-3 定义的ICU脓毒症患者医疗记录,使用 8∶2 的比例将数据划分为训练集和测试集,并在训练集上使用五折交叉验证,在测试集上评估模型的性能.实验结果表明,相比基准方法,提出的模型具有相对较高的AUROC和AUPRC,有效提高了ICU脓毒症患者死亡率的预测性能.
Accurate identification of sepsis patients with higher mortality is of great significance to improve survival outcomes and assist ICU doctors in medical decision-making.However,traditional machine learning methods require complex feature engineering and do not fully utilize the high-missing dynamic time-series data and sparse static data in medical data of patient.Aiming at the shortcomings of mortality prediction of sepsis patients in ICU,an attention-based multiple input fusion learning model was designed to capture patient's features in the spatiotemporal dimension of patient medical records from dynamic time-series data with high missing rate and sparse static data,respectively,and learn the interaction between spatiotemporal features.The medical records of 10 567 ICU Sepsis patients with the definition of sepsis-3 were extracted from the MIMIC-Ⅲdataset.The data were divided into a training set and a test set with the ratio of 8∶2,and the performance of the model was evaluated on the test set using the 5-fold cross-validation on the training set.The experimental results showed that the model had relatively higher AUROC and AUPRC compared with the baseline method,and effectively improved the performance of mortality prediction in ICU sepsis patients.

patients with sepsismortality predictionattention mechanismtime series datafusion model

詹贤春、程恒亮、李维华

展开 >

云南大学信息学院,云南昆明 650500

脓毒症患者 死亡率预测 注意力机制 时序数据 融合模型

云南省中青年学术与技术带头人后备人才培养计划

02305AC160014

2024

云南大学学报(自然科学版)
云南大学

云南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.663
ISSN:0258-7971
年,卷(期):2024.46(5)