首页|基于多种群多策略的竞争粒子群算法

基于多种群多策略的竞争粒子群算法

扫码查看
针对标准粒子群算法遇到的易陷入局部最优、收敛差、求解精度低等问题,提出了多种群多策略竞争粒子群优化算法.新算法将每一代粒子根据适应度排序,将其划分为不同的子种群,并引入非线性Logistic混沌映射权重、收缩因子和混合高斯-柯西扰动机制来更新这些子种群.使用不同的粒子更新方式平衡了算法整个时期的全局搜索和局部开发能力,从而加快了收敛速度.最后,将多种群多策略竞争粒子群优化算法与标准粒子群算法和其它优化算法在11 个测试函数上进行对比,结果表明,新算法在跳出局部最优解、和寻优精度方面显著优于标准粒子群算法,且有更快的收敛速度.在寻优能力和算法稳定性上大幅度强于其它对比算法.
A competitive particle swarm algorithm based on multiple swarm and strategy
The author proposes a multi-population and multi-strategy competitive particle swarm optimization(PSO)algorithm to address the issues faced by the standard PSO,such as falling into local optima,poor conver-gence,and low solution accuracy.In the new algorithm,each generation of particles is sorted based on fitness,divid-ed into different sub-populations,and updated using nonlinear logistic chaotic mapping weights,contraction fac-tors,and a hybrid Gaussian-Cauchy perturbation mechanism.The use of different particle update strategies bal-ances the global search and local exploitation capabilities of the algorithm,thus accelerating the convergence speed.Finally,the multi-population and multi-strategy competitive PSO algorithm is compared with the standard PSO and other optimization algorithms on 11 test functions.The results demonstrate that the new algorithm significantly outperforms the standard PSO in terms of escaping local optima and solution accuracy,and it has a faster conver-gence speed.It also exhibits significantly higher optimization capability and algorithm stability compared to other benchmark algorithms.

swarm divisionmulti-strategyhybrid mutationchaotic mapping

李媛媛、李文博、尚志豪

展开 >

大连交通大学 软件学院,辽宁 大连 116028

种群划分 多策略 混合变异 混沌映射

辽宁省教育厅项目辽宁省教育厅项目

LJKZ0481LJKMZ20220838

2024

云南民族大学学报(自然科学版)
云南民族大学

云南民族大学学报(自然科学版)

CSTPCD
影响因子:0.381
ISSN:1672-8513
年,卷(期):2024.33(1)
  • 4