首页|基于知识蒸馏的不平衡数据下入侵检测方法研究

基于知识蒸馏的不平衡数据下入侵检测方法研究

扫码查看
基于深度学习的网络入侵检测模型面临模型结构复杂、部署效率低及流量数据类别不平衡的问题.针对这些问题,提出了 1种结合知识蒸馏和类别权重焦点损失的网络入侵检测方法.该方法以精度高、参数量较多的入侵检测模型作为教师模型,与小型学生模型生成蒸馏损失;引入增加类别权重的焦点损失函数作为学生损失;结合蒸馏损失与学生损失生成总的损失函数优化学生模型.实验结果表明,该方法性能相较于非蒸馏模型在各项指标上均有一定提升.
Research on intrusion detection method based on knowledge distillation under unbalanced data set
The network intrusion detection model based on deep learning is faced with the problems of complex mod-el structure,low deployment efficiency and unbalanced traffic data categories.To solve these problems,a network in-trusion detection method combining knowledge distillation and class-weight focus loss is proposed.In this method,the intrusion detection model with high precision and large number of parameters is used as the teacher model to generate distillation loss with the small student model.The focus loss function with increasing category weight is in-troduced as student loss.The total loss function is generated by combining distillation loss and student loss to opti-mize the student model.The experimental results show that the method has some improvement in each index com-pared with the non-distillation model.

intrusion detectiondeep learningknowledge distillationunbalanced datafocal loss

董国芳、刘兵、鲁烨堃

展开 >

云南民族大学电气信息工程学院,云南 昆明 650500

入侵检测 深度学习 知识蒸馏 不平衡数据 焦点损失

国家自然科学基金

61662089

2024

云南民族大学学报(自然科学版)
云南民族大学

云南民族大学学报(自然科学版)

CSTPCD
影响因子:0.381
ISSN:1672-8513
年,卷(期):2024.33(2)
  • 19