首页|基于特征分箱和K-Means算法的用户行为分析方法

基于特征分箱和K-Means算法的用户行为分析方法

扫码查看
针对网购用户所产生的购物行为进行分析,首先通过数据处理构建客户关系管理模型(RFM模型),在此模型的基础上采用特征分箱法和K-Means聚类两种方法对用户进行细分,并对2种模型结果进行比较分析,讨论二者的差异性和具体的应用范围和意义.其中,基于特征分箱法的RFM模型将变量转化到相似的尺度上并将变量离散化,使得用户分类标签更加清晰,也可依据各类标签分类出不同类型的用户.K-Means算法通过轮廓系数评估聚类算法质量以至于选取最优K值.本文实验分析结果可为运营商提供更加可靠直观的数据,使得运营商可以根据不同用户的不同行为进行市场细分,进而进行精准营销和服务设置.
User behavior analysis method based on feature binning and K-Means algorithm
To analyze the shopping behavior generated by online shopping users,firstly,a customer relationship man-agement model(RFM model)is constructed through data processing,and on the basis of this model,two methods of feature binning and K-Means clustering are used to classify users,and compare and analyze the results of the two models,discuss their differences and specific application scope and significance.Among them,the RFM model based on the feature binning method converts the variables to similar scales and discretizes the variables,so that the user classification labels are clearer,and different types of users can also be classified according to various labels.The K-Means algorithm evaluates the quality of the clustering algorithm by the silhouette coefficient so as to select the optimal K value.The experimental analysis results in this paper can provide operators with more reliable and intui-tive data,so that operators can segment the market according to the different behaviors of different users,and then conduct precise marketing and service settings.

feature binningK-meansuser behaviorRFMmodelonline shopping

殷丽凤、路建政

展开 >

大连交通大学软件学院,辽宁大连 116028

特征分箱 K-Means算法 用户行为 RFM模型 网购

国家自然科学基金

61771087

2024

云南民族大学学报(自然科学版)
云南民族大学

云南民族大学学报(自然科学版)

CSTPCD
影响因子:0.381
ISSN:1672-8513
年,卷(期):2024.33(2)
  • 20