首页|基于自适应惯性权重PSO-LightGBM的信用风险评估研究

基于自适应惯性权重PSO-LightGBM的信用风险评估研究

扫码查看
贷款市场复杂的个人信用风险问题中,信用风险评估模型的构建是十分关键的一步.利用Lending Club数据集,进行信用风险评估模型的构建来预测客户的违约概率.首先进行数据处理,再通过合成少数类过采样技术(SMOTE)算法处理数据正负样本不平衡的问题,获得完备的信用贷款数据.其次采用轻量梯度提升机(LightGBM)模型进行训练,并使用自适应惯性权重的粒子群优化(PSO)算法得到LightGBM的最优参数.与多个主流算法进行对比,实验结果表明,构建的模型有更好的性能.
Credit risk assessment based on LightGBM and adaptive inertia weight PSO
In view of the complex personal credit risk problem in the loan market,the construction of credit risk as-sessment model is a very important step.Using the Lending Club dataset,the credit risk assessment model is con-structed to predict the default probability of customers.First,data processing is carried out,and then the problem of positive and negative sample imbalance is processed by the SMOTE(synthetic minority oversampling technique)al-gorithm to obtain complete credit loan data.Secondly,the LightGBM model is used for training,and the PSO(parti-cle swarm optimization)algorithm of adaptive inertia weights is used to obtain the optimal parameters of LightGBM.After comparison with multiple mainstream algorithms,experimental results show that the constructed model has bet-ter performance.

credit riskimbalanced datasetsSMOTELightGBMPSO

付芷宁、李慧敏、徐亚田、陶玉虎、高伟

展开 >

云南民族大学数学与计算机科学学院,云南昆明 650500

信用风险 不平衡数据 合成少数类过采样技术 LightGBM模型 粒子群优化算法

云南省研究生优质课程建设项目

云学位[2022]8号

2024

云南民族大学学报(自然科学版)
云南民族大学

云南民族大学学报(自然科学版)

CSTPCD
影响因子:0.381
ISSN:1672-8513
年,卷(期):2024.33(3)
  • 7