首页|基于改进Swin Transformer模型的中草药图像识别研究

基于改进Swin Transformer模型的中草药图像识别研究

扫码查看
随着深度学习技术的快速发展,计算机视觉在多个领域展现出巨大的应用前景.中草药识别对于保障中药材质量具有重要意义,通过优化模型结构和引入压缩—激励注意力机制,提出了一种基于改进Swin Transformer模型的中草药图像识别方法.基于公开的中草药图像数据集的实验结果表明,改进后的模型明显提升了中草药图像的识别准确率,同时较小的损失函数也表明新模型具有较强的泛化能力.
Research on Chinese Medicine Image Recognition Based on an Improved Swin Transformer Model
With the rapid development of deep learning technology,computer vision has shown tremen-dous application prospects in multiple fields.Chinese herbal medicine recognition is of great signifi-cance for ensuring the quality of Chinese herbal medicine.By optimizing the model structure and intro-ducing the Squeeze-and-Excitation attention mechanism,a Chinese herbal medicine image recognition method based on an improved Swin Transformer model was proposed.The experimental results based on the publicly available dataset of Chinese herbal medicine images showed that the improved model significantly improved the recognition accuracy of Chinese herbal medicine images.Meanwhile,the smaller loss function also indicated that the new model had strong generalization ability.

Deep learningChinese herbal medicine recognitionSwin TransformerAttention mechanism

张静

展开 >

安徽三联学院,安徽 合肥 230601

深度学习 中草药识别 Swin Transformer 注意力机制

2024

云南师范大学学报(自然科学版)
云南师范大学

云南师范大学学报(自然科学版)

CSTPCD
影响因子:0.54
ISSN:1007-9793
年,卷(期):2024.44(6)