首页|End-to-end computational design for an EUV solar corona multispectral imager with stray light suppression

End-to-end computational design for an EUV solar corona multispectral imager with stray light suppression

扫码查看
An extreme ultraviolet solar corona multispectral imager can allow direct observation of high temperature coronal plasma,which is related to solar flares,coronal mass ejections and other significant coronal activities.This manuscript proposes a novel end-to-end computational design method for an extreme ultraviolet(EUV)solar corona multispectral imager operating at wavelengths near 100 nm,including a stray light suppression design and computational image recovery.To suppress the strong stray light from the solar disk,an outer opto-mechanical structure is designed to protect the imaging component of the system.Considering the low reflectivity(less than 70%)and strong-scattering(roughness)of existing extreme ultraviolet optical elements,the imaging component comprises only a primary mirror and a curved grating.A Lyot aperture is used to further suppress any residual stray light.Finally,a deep learning computational imaging method is used to correct the individual multi-wavelength images from the original recorded multi-slit data.In results and data,this can achieve a far-field angular resolution below 7",and spectral resolution below 0.05 nm.The field of view is±3 R☉ along the multi-slit moving direction,where R☉represents the radius of the solar disk.The ratio of the corona's stray light intensity to the solar center's irradiation intensity is less than 10-6 at the circle of 1.3R☉.

EUV solar corona imagerCurved gratingStray light suppressionComputational multispectral imaging

Jinming Gao、Yue Sun、Yinxu Bian、Jilong Peng、Qian Yu、Cuifang Kuang、Xiangzhao Wang、Xu Liu、Xiangqun Cui

展开 >

State Key Laboratory of Extreme Photonics and Instrumentation,College of Optical Science and Engineering,Zhejiang University,Hangzhou 310027,China

ZJU-Hangzhou Global Scientific and Technological Innovation Center,Zhejiang University,Hangzhou 310027,China

Nanjing Institute of Astronomical Optics&Technology,Chinese Academy of Sciences,Nanjing 210042,China

Beijing Environmental Satellite Engineering Institute,Beijing 100094,China

展开 >

国家自然科学基金国家自然科学基金

6200512062125504

2024

天文研究与技术-国家天文台台刊
中国科学院国家天文台云南天文台

天文研究与技术-国家天文台台刊

影响因子:0.333
ISSN:1672-7673
年,卷(期):2024.1(1)
  • 36