首页|基于BP神经网络的油气田站场管道安全预警方法

基于BP神经网络的油气田站场管道安全预警方法

扫码查看
油气田站场管道承担着接收、增压、分输、清管、计量等具有高度危险性工作,一旦管道出现异常状况容易引起重大燃烧和爆炸事故,因此对油气田站场管道状态进行监测及安全预警十分重要.利用基于BP神经网络的状态监测数据处理方法,首先确定油气田站场管道应变数据作为状态监测指标,采集油气田站场管道的应变监测数据,通过BP神经网络进行仿真实验,获得并验证管道应变预测模型,利用控制图理论筛选出异常数据并对异常数据分类分级,同时依据危险等级类别进行安全预警并制定预案.该方法在风险发生初期就能发现异常状态数据,从而有针对性地采取相应的安全对策,以防止危险事故的发生.
Safety Early Warning Method for Pipes in Oil and Gas Field Stations Based on BP Neu-ral Network
The pipes in oil and gas field stations undertake the tasks of receiving,pressurizing,dis-tributing,pigging,metering,etc.,which are highly dangerous.Once abnormal conditions occur in the pipe,it may easily to cause major combustion and explosion accidents.Therefore,it is very impor-tant to monitor the status of the pipes in oil and gas field stations and give safety warnings.In this paper,based on BP neural network status monitoring data processing method,the safety early warning of pipe in oil and gas field stations is achieved according to the control chart theory.First of all,the strain data of pipes in oil and gas field stations are determined as the status monitoring indicator,and the strain monitoring data of pipes in oil and gas field stations are collected.Then,the BP neural network is used for simulation experiments to obtain and verify the pipe strain prediction model.Finally,the prediction data is screened by using the control chart,and the abnormal data is classified and graded.The safety early warning is carried out according to the hazard level category,and the safety plan is formulated to prevent the occurrence of dangerous accidents.The safety early warning method based on the BP neural network proposed in this paper uses status monitoring data for early warning analysis,and abnormal state data can be found at the early stage of risk occurrence,so as to take corresponding safety counter-measures.

pipe in oil and gas field stationsafety early warningstatus monitoringBP neural net-workcontrol chart theory

赵捍军、张啸枫、赵瑞东、朱梓文、徐晴晴

展开 >

中国石油勘探开发研究院

中国石油油气和新能源分公司采油采气工艺处

中国石油大学(北京)安全与海洋工程学院应急管理部油气生产安全与应急技术重点实验室

油气田站场管道 安全预警 状态监测 BP神经网络 控制图理论

中国石油科技创新基金研究项目中国石油大学(北京)科研基金项目国家管网集团2021年揭榜挂帅课题

2021DQ02-08012462022YXZZ002WZXGL202106

2024

油气田地面工程
大庆油田有限责任公司

油气田地面工程

影响因子:0.273
ISSN:1006-6896
年,卷(期):2024.43(4)
  • 11