首页|天然气管道压缩机组故障预测与健康管理研究

天然气管道压缩机组故障预测与健康管理研究

扫码查看
智慧管网具有综合性预判等方面能力,但目前油气管道关键设备如压缩机组非计划停机频发,维修保证策略以"事后维修"和"定期维修"为主,对故障预知预测的研究思路不够清晰、方法不够科学.维修检修需定期开展,故障管控能力及维护策略需进一步提升.总结国内外典型压缩机组及设备故障预测与健康管理(PHM)建设的现状,首次分析了管道压缩机组燃机性能算法、压缩机效率算法、模拟仿真等算法的核心问题、研究方法、关键量化指标及各研究方法的优点.研究天然气管道压缩机组PHM系统的重点难点,对平台融合与系统设计、机组变工况、多元数据分析技术、停机故障失效模型及算法研究、验证评价、知识图谱等重点研究内容提出了思考和展望.此研究对提升油气管道关键设备管理、开展平台融合设计及智能管道核心技术研究具有一定借鉴意义.
Research on Fault Prediction and Health Management(PHM)of Natural Gas Pipeline Compressor Units
Smart pipeline network has comprehensive prediction and other capabilities,but current-ly,key equipment in oil and gas pipelines such as compressor units frequently experience unplanned shutdowns,and maintenance assurance strategies mainly rely on"post maintenance"and"regular main-tenance".The research ideas and methods for fault prediction and forecasting are not clear enough and not scientific enough.Regular maintenance and repair are required,and the fault management and con-trol capabilities and maintenance strategies need to be further improved.The current situation of the construction of typical compressor units and equipment fault prediction and health management(PHM)at home and abroad is summarized,and the core problems,research methods,key quantitative indica-tors,and advantages of various research methods for pipeline compressor unit gas turbine performance algorithms,compressor efficiency algorithms,simulation algorithms are analyzed for the first time.The key and difficult points of the PHM system for natural gas pipeline compressor units are studied,thoughts and prospects are proposed for key research contents such as platform integration and system design,unit variable operating conditions,multivariate data analysis technology,shutdown fault fail-ure model and algorithm research,verification and evaluation,knowledge graph,etc.The research has certain reference significance for improving the management of key equipment of oil and gas pipe-lines,and carrying out platform integration design and core technology research on intelligent pipelines.

pipeline compressor unitPHM algorithmfault predictionhealth managementlife prediction

古自强、韩刚、李华、将辉娟、许亮

展开 >

国家石油天然气管网集团公司

新疆多介质管道安全输送重点实验室

大庆油田有限责任公司第七采油厂

中国石油天然气管道工程有限公司

展开 >

管道压缩机组 PHM算法 故障预测 健康管理 寿命预测

国家管网集团西部管道公司研究项目

2021-0111

2024

油气田地面工程
大庆油田有限责任公司

油气田地面工程

影响因子:0.273
ISSN:1006-6896
年,卷(期):2024.43(9)