首页|含聚污水重力沉降分离过程淤泥增长特性预测

含聚污水重力沉降分离过程淤泥增长特性预测

扫码查看
重力沉降作为污水处理的基本工艺,其常用设施重力沉降罐在运行过程中,来水中的悬浮物会不断向罐底沉积形成淤泥,为了防止水质二次污染,保障设施的高效运行,需根据淤泥量来制定清淤方案.文章基于大庆某油田污水处理站运行实际,从日处理量、含聚浓度、悬浮物含量、含油量、悬浮物脱除率等特征量出发,通过构建重力沉降罐清淤数据集,分析各特征量间的关系,并确定影响淤泥增长的主导因素,进而基于BP神经网络架构建立淤泥增长速率预测模型.研究结果表明,污水中含聚浓度在一定程度上影响含油量和悬浮物含量,随着沉降罐日处理量的增加,油珠脱除率和悬浮物脱除率降低,淤泥增长速率正相关于污水悬浮物含量、悬浮物脱除率和含聚浓度,基于生产数据训练的预测模型拟合度分布在0.9以上,满足精度要求,为污水沉降罐清淤操作的时间选择提供了依据和方法.
Prediction of Sludge Growth Haracteristics during Gravity Sedimentation Separation of Polymer Flooding Produced Water
As a fundamental process in wastewater treatment,gravity sedimentation uses common facilities like gravity sedimentation tanks,where suspended solids in the incoming water continuously settle to the tank bottom,forming sludge.To prevent secondary pollution of water quality and ensure the efficient operation of the facilities,sludge removal plans must be formulated based on the amount of sludge.This article,based on the actual operation of a sewage treatment plant in the Daqing Oilfield,starts from characteristics such as daily treatment volume,polymer concentration,suspended solids content,oil content,and suspended solids removal rate.By constructing a dataset for gravity sedimentation tank sludge removal,the relationships between various characteristic quantities are analyzed,and the dominant factors affecting sludge growth are determined.Subsequently,a sludge growth rate prediction model is established based on the BP(Backpropagation)neural network architecture.The research results indicate that the polymer concentration in the wastewater affects the oil content and suspended solids content to some extent.As the daily processing volume of the sedimentation tank increases,the removal rates of oil droplets and suspended solids decrease.The sludge growth rate is positively correlated with the content of suspended solids,the suspended solids removal rate,and the polymer concentration in the wastewater.The prediction model,trained on production data,has a fitting degree distribution above 0.9,meeting the accuracy requirements and providing a basis and method for selecting the timing of sludge removal operations in sewage sedimentation tanks.

gravity settlingsettling tank dredgingsludge growth rateBP neural networkpolymer flooding produced water

李金玲、戚向东、王志华

展开 >

中国石油大庆油田有限责任公司第四采油厂

东北石油大学提高油气采收率教育部重点实验室

中国石油塔里木油田分公司

重力沉降 沉降罐清淤 淤泥增长速率 BP神经网络 含聚污水

2024

油气田环境保护
中国石油天然气集团公司安全环保与节能部 中国石油天然气股份有限公司安全环保与节能部 中国石油集团安全环保技术研究院

油气田环境保护

影响因子:0.367
ISSN:1005-3158
年,卷(期):2024.34(5)