首页|基于振动-电流广域特征与软共享机制的断路器多故障诊断

基于振动-电流广域特征与软共享机制的断路器多故障诊断

扫码查看
万能式断路器机械结构复杂,其产生的故障具有多源性,对多源故障进行失效溯源分析是十分必要的。然而,传统的多任务诊断方法不能很好地处理任务间存在的干扰问题,导致故障识别率降低。针对此问题,提出一种基于振动-电流广域特征与软共享机制的多故障诊断方法。首先利用TKEO与DTM,实现分合闸振动信号片段的精准分割,在此基础上分别融合触头动作关联振动信号和附件电流信号的广域特征信息合成彩色图像样本以丰富故障表征信息。然后基于多任务学习的软共享机制构建多故障诊断模型,并通过自适应加权方法来自动的调整两个任务损失函数的权重比例,消除了任务间的相互干扰,进而提高了故障诊断的性能。最后分别从合闸和分闸两个过程进行实例分析,结果表明本文所提方法在两个任务的分类准确率分别达到了 99。78%和 99。85%,可以有效地实现万能式断路器多故障诊断。
Multi-fault diagnosis of circuit breaker based on vibration-current wide-domain features and soft sharing mechanism
The mechanical structure of conventional circuit breaker is complex,and the faults caused by it are attriltuted to multi-source,so it is necessary to analyze the multi-source faults.However,the traditional multitask diagnosis method cannot deal with the interference between tasks well,which leads to the decrease of fault recognition rate.To solve this problem,a multi-fault diagnosis method based on wide-area features of vibration-current and soft sharing mechanism is proposed.Firstly,TKEO and DTM are used to achieve the accurate segmentation of vibration signal segments of the opening and closing process,and on this basis,the wide-area features of the vibration signal associated with the contact action and the attachment current signal are fused to synthesize color image samples to enrich the fault characterization information.Then,a multi-fault parallel diagnosis model is constructed based on the soft sharing mechanism of multitask learning,and automatically adjusts the weight ratio of the loss function of two tasks is automatically adjusted by adaptive weighting method to eliminate the mutual interference between tasks,thus improving the performance of fault diagnosis.Finally,examples are analyzed based on the two processes of closing and breaking respectively,and the results show that the classification accuracy of proposed method in this paper reaches 99.78%and 99.85%for two tasks respectively,which can effectively realize the multi-fault diagnosis of conventional circuit breakers.

conventional circuit breakerwide-area information fusionmultitask learningmulti-fault diagnosis

孙曙光、杨飞龙、陈静、黄光临、王景芹

展开 >

河北工业大学人工智能与数据科学学院 天津 300401

温州聚星科技股份有限公司 温州 325062

河北工业大学省部共建电工装备可靠性与智能化国家重点实验室 天津 300130

万能式断路器 广域信息融合 多任务学习 多故障诊断

河北省自然科学基金

E2021202136

2024

仪器仪表学报
中国仪器仪表学会

仪器仪表学报

CSTPCD北大核心
影响因子:2.372
ISSN:0254-3087
年,卷(期):2024.45(1)
  • 23