首页|基于粒子群的多毫米波安防机器人环境感知方法

基于粒子群的多毫米波安防机器人环境感知方法

扫码查看
安防机器人常工作于昏暗、烟雾等环境,毫米波有探测这类环境的能力,但其点云是稀疏的,可将多毫米波的点云融合以提高环境感知的能力。点云融合时需要精确的结构参数,针对测量法获取结构参数存在误差的问题,在分析多毫米波点云坐标的基础上,利用粒子群算法对毫米波雷达结构参数进行搜索,并根据搜索结果进行点云融合以及环境地图的构建;同时提出稀疏点云地图的评价指标,对毫米波感知效果进行定量评价。利用安防机器人在昏暗环境下开展实验,结果表明与结构参数由测量法获取的多毫米波感知系统对比,点云数量有所增加,地图边界空洞数量平均减少 55%,边界噪声率平均下降 12。9%,物体点云离散度平均下降约 0。06,中心位置的偏移量均有所减小。
Environment perception method based on PSO for Multi-millimeter wave security robot
Security robots frequently operate in the severe environments with dim and smoke,etc.Such an environment can be detected using millimeter wave,but its point cloud is sparse.Correspondingly the multi-millimeter waves point clouds can be fused to improve the ability to perceive environment.Accurate structural parameters are required for point cloud fusion to address the error in obtaining structural parameters through measurement.By analyzing the coordinates of multi-millimeter wave point cloud,particle swarm algorithm is utilized to search the structural parameters of millimeter wave radar,and the point cloud fusion as well as the construction of environment map are carried out according to the search results.Simultaneously,the evaluation critical of sparse point cloud map is proposed to quantitatively assess the millimeter wave sensing effect.Experiments were carried out in a darkened environment with a security robot,the results of which are as follows.The number of point clouds increases.The number of map boundary holes decreases by 55%on average.The boundary noise rate is reduced by 12.9%on average.The dispersion of the object point clouds decreases by about 0.06 on average.There is a decrease in the offsets of center positions in all experiments,when compared to the multi-millimeter-wave perception system where the structural parameters were obtained by the measurement method.

FM millimeter-wavesecurity robotPSOenvironmental perceptionmapping

戴虎、郑睿、马小陆、吴敏

展开 >

安徽师范大学物理与电子信息学院 芜湖 241002

安徽省智能机器人信息融合与控制工程实验室 芜湖 241002

安徽工业大学电气与信息工程学院 马鞍山 243032

调频毫米波 安防机器人 粒子群 环境感知 建图

安徽省重点研发计划安徽省高等学校优秀青年支持计划芜湖市重点研发与成果转化项目

202004a0502001gxyq2020022023yf083

2024

仪器仪表学报
中国仪器仪表学会

仪器仪表学报

CSTPCD北大核心
影响因子:2.372
ISSN:0254-3087
年,卷(期):2024.45(1)
  • 25