首页|基于腔内原位探测的空间冷原子微波钟

基于腔内原位探测的空间冷原子微波钟

扫码查看
原子钟作为目前最精密的计时仪器,在国民经济和国家安全各领域发挥着重要作用。在地球轨道卫星上运行高精度原子钟,可以在地球大范围内开展高精度时间同步与比对。不同于以往通过抛射冷原子团两次经过微波腔实现Ramsey微波作用的空间冷原子钟,提出了一种新型的基于腔内原位探测的空间冷原子微波钟方案,在同一微波谐振腔内先后完成铷87原子的激光冷却、原子微波相互作用、冷原子探测等过程。该方案可以更好的利用微重力环境提高钟周期中原子与微波相互作用时间的占空比,从而有效减小Dick效应对原子钟性能的影响。介绍了冷原子微波钟系统设计与工作原理,给出了微重力环境下性能分析和预期指标,最后展示了冷原子微波钟地面测试中获得的大约为1。35×10-12τ-1/2的频率稳定度,初步展示了新型空间冷原子钟方案的可行性。
Space cold atoms microwave clock based on in-situ detection in the cavity
The atomic clock,as the most precise timing instrument at present,is playing an important role in various fields of national economy and security.By operating atomic clocks on earth orbit satellites,many high-precision time synchronization and comparison-related applications can be implemented on a large scale on the earth.Unlike previous space cold atomic clocks that achieve microwave and atoms interaction by launching cold atoms cloud to traveling two microwave cavities,this article proposes a new space cold atomic microwave clock scheme based on in situ detection in the cavity.This scheme completes the laser cooling of rubidium 87 atoms,atoms and microwave interaction,cold atom detection,and other clock processes in the same microwave resonant cavity.It is possible to more fully utilize the microgravity environment to increase the duty cycle of the interaction time between atoms and microwaves in the clock cycle.Therefore,the impact of the Dick effect on the performance of atomic clocks is reduced.This article introduces the design and working principle of this kind of cold atoms microwave clock system,provides performance analysis and expected frequency stability in a microgravity environment,and finally shows that in the ground test results of the clock prototype.The tested 1.35×10-12 τ-1/2 frequency stability of the cold atom microwave clock demonstrates the potential performance of the clock operating in microgravity environments.

atomic clockmicrogravitymicrowave cavityspace stationfrequency stability

吕德胜、任伟、项静峰、赵剑波、邓思敏达

展开 >

中国科学院上海光学精密机械研究所空天激光技术与系统部 上海 201800

原子钟 微重力 微波腔 空间站 频率稳定度

载人航天工程空间应用系统项目中国科学院青年创新促进会项目国家自然科学基金国家自然科学基金

1200440112304550

2024

仪器仪表学报
中国仪器仪表学会

仪器仪表学报

CSTPCD北大核心
影响因子:2.372
ISSN:0254-3087
年,卷(期):2024.45(2)
  • 22