首页|基于冗余关系分析的传感器自诊断设计方法研究

基于冗余关系分析的传感器自诊断设计方法研究

扫码查看
工业过程中传感器数量众多且可靠性要求高,而传统定期检测评估其健康状况的方式不但费时费力且不能满足传感器智能化的发展需求。针对这一问题,提出了一种基于测量数据统计相关性的传感器自诊断设计方法。利用传感器测量数据建立其统计关系模型,借助自编码器提取传感器数据特征并将其编码为二进制形式。在同时考虑传感器测量数据统计独立和统计相关两种情况下,在有参考值时,通过引入故障检测概率和误检概率建立了独立统计模型实现传感器的故障自诊断;在无参考值情况下,借助高斯Copula函数建立多元统计依赖模型评估参数之间的相关性,并利用贝叶斯理论在不依赖参考值的情况下自学习获取传感器的健康状况。本研究以镍闪速炉系统为例,两种模式下测量系统中健康传感器的故障检测后验概率达到了 0。92,即故障统计模型的参数与建模期望相符。实验结果表明,所提方法在两种模式下均能准确识别出测量系统中的故障传感器,验证了所提方法的有效性与可行性。
Research on sensor self-diagnosis design method based on redundancy relationship analysis
In industrial processes,the multitude of sensors requires high reliability,yet traditional routine inspection methods for assessing their health status are not only time-consuming and labor-intensive but also fail to meet the demands for sensor intelligence development.To address this issue,a sensor self-diagnostic design method based on the statistical correlation of measurement data is proposed.This method establishes statistical relationship models using sensor measurement data and utilizes auto-encoders to extract features from sensor data and encode them in binary form.Considering both statistically independent and correlated situations of sensor measurement data,a statistical model for independent diagnosis is established by introducing fault detection probability and false alarm probability when reference values are available.In the absence of reference values,a multivariate statistical dependency model using the Gaussian Copula function is constructed to assess the correlation among parameters.Furthermore,relying on Bayesian theory,the model autonomously learns to ascertain the health status of sensors without reference values.The proposed method is demonstrated using a nickel flash furnace system as an example.In both modes,the posterior probability of sensor fault detection reaches 0.92,indicating that the parameters of the fault statistical model align with the modeling expectations.Experimental results confirm that the proposed method accurately identifies faulty sensors in the measurement system under both modes,thereby validating its effectiveness and feasibility.

sensorself-diagnosisno reference valueauto-encoder

蒋栋年、褚天锐、高玉鑫

展开 >

兰州理工大学电气工程与信息工程学院 兰州 730050

兰州理工大学甘肃省工业过程先进控制重点实验室 兰州 730050

华南理工大学未来技术学院 广州 511442

传感器 自诊断 无参考值 自编码器

国家自然科学基金甘肃省重点研发计划(工业类)兰州市科技计划甘肃省杰出青年基金兰州理工大学红柳杰出青年人才支持计划陇原青年英才项目

6226302023YFGA00612022-2-6920JR10RA202

2024

仪器仪表学报
中国仪器仪表学会

仪器仪表学报

CSTPCD北大核心
影响因子:2.372
ISSN:0254-3087
年,卷(期):2024.45(3)
  • 25