首页|基于视觉的输电线路金具锈蚀缺陷检测方法研究进展

基于视觉的输电线路金具锈蚀缺陷检测方法研究进展

扫码查看
输电线路金具的表面锈蚀作为常见的缺陷类型,是危害输电线路安全运行的重要隐患之一,如何快速、准确地发现锈蚀的金具设备并进行修复是线路巡检运维工作亟待解决的问题。本文综述了近十年来基于视觉的输电线路金具锈蚀缺陷检测方法的研究进展。首先简述了基于传统图像处理的金具锈蚀缺陷检测流程;然后按照基于传统图像处理、深度学习方法概述了金具设备锈蚀缺陷检测,重点阐述了基于深度卷积神经网络的目标检测和语义分割算法在输电线路金具锈蚀缺陷检测中的应用;随后介绍了基于深度学习的金具锈蚀缺陷检测自建数据集以及性能评价指标;最后指出了基于深度学习的输电线路金具锈蚀缺陷检测方法目前存在的问题,并对未来研究工作进行了展望。
Research progress of vision-based rust defect detection methods for metal fittings in transmission lines
As a common defect type,surface rust of metal fittings in transmission lines is one of the important hidden dangers endangering the safe operation of transmission lines.How to quickly and accurately discover and repair rusted metal fittings is an urgent problem to be solved in the work of transmission line inspection.This article reviews the research progress of vision-based rust defect detection methods for metal fittings in the last ten years.Firstly,the rust defect detection process of metal fittings based on traditional image processing is introduced.Then,the rust defect detection of metal fittings is summarized according to traditional image processing and deep learning methods.The application of object detection and semantic segmentation algorithms in rust defect detection of metal fittings is emphasized.Next,the self-built data sets for metal fittings'rust defect detection and performance evaluation indexes are introduced.Finally,the existing problems of rust defect detection methods based on deep learning are pointed out and future research work is prospected.

metal fittingsrust defectimage processingdeep learningobject detectionsemantic segmentation

刘传洋、吴一全、刘景景

展开 >

南京航空航天大学电子信息工程学院 南京 211106

池州学院机电工程学院 池州 247000

金具 锈蚀缺陷 图像处理 深度学习 目标检测 语义分割

国家自然科学基金高校自然科学研究项目高校自然科学研究项目

615731832023AH052358CZ2022ZRZ07

2024

仪器仪表学报
中国仪器仪表学会

仪器仪表学报

CSTPCD北大核心
影响因子:2.372
ISSN:0254-3087
年,卷(期):2024.45(3)
  • 84