首页|基于球面正则化的支持向量描述视觉异常检测

基于球面正则化的支持向量描述视觉异常检测

Spherical regularized support vector description for visual anomaly detection

扫码查看
异常检测作为视觉领域中一项独特而关键的任务,在医疗、安保等领域具有广泛的前景.异常检测目前受限于大规模异常数据标注,因此现有方法集中在单类分类和弱监督学习,深度支持向量描述(DeepSVDD)是实现单类分类的常见方法.然而,传统Deep SVDD在开展异常检测时往往面临球体崩塌.针对这一问题,提出了基于球面正则化的SVDD异常检测算法,通过引入软间隔损失与支持向量的思想,优化模型学习流程.进一步地,面向可标注样本,提出了基于SVDD的弱监督异常检测方法.在公开数据集MNIST和CIFAR-10上进行消融和对比实验,实验证明,相比于有监督算法,在MNIST数据集上,SR-WSVDD的性能提高了 3.7%,而在CIFAR-10数据集上则提高了 16.7%.此外,与其他弱监督算法相比,SR-WSVDD在CIFAR-10数据集上提升了 1.8%.所提出的SR-SVDD异常检测算法,弥补Deep SVDD容易发生球体崩塌的缺陷,使模型异常检测结果更加准确.
Anomaly detection is an important task in the computer vision,such as medical,security.One of the challenges in anomaly detection is not easy to obtain large-scale annotated anomalous data.Existing methods focus on one-class classification and weakly supervised learning.Deep support vector data Description(Deep SVDD)is an important method to realize one-class anomaly detection.However,previous Deep SVDD often encounter the hypersphere collapse when constructing the model of the hypersphere.To solve this problem,support vector data description based on spherical regularization(SR-SVDD)is proposed in this paper.SR-SVDD applies the idea of support vectors to optimize the learning process by introducing slack terms.Furthermore,this paper proposes weakly supervised support vector data description based on spherical regularization(SR-WSVDD),which utilizes small amounts of labeled data.Ablation experiments and comparison experiments are carried out on MNIST and CIFAR-10.Experimental results show that,compared with supervised algorithms,the performance of SR-WSVDD is improved by 3.7%on the MNIST,and 16.7%on the CIFAR-10.In addition,compared with other weakly supervised algorithms,SR-WSVDD improves by 1.8%on CIFAR-10 dataset.The proposed SR-SVDD solves the spherical collapse of previous Deep SVDD,and makes the anomaly detection results more accurate.

computer visionone-class classificationweakly supervised learninganomaly detectionautoencodersupport vector

邓诗卓、滕达、李晓红、陈佳祺、陈东岳

展开 >

东北大学信息科学与工程学院 沈阳 110819

东北大学佛山研究生创新学院 佛山 528311

计算机视觉 单类分类 弱监督学习 异常检测 自编码器 支持向量

国家自然科学基金广东省基础与应用基础研究基金广东省基础与应用基础研究基金

622020872024A15150102442021B1515120064

2024

仪器仪表学报
中国仪器仪表学会

仪器仪表学报

CSTPCD北大核心
影响因子:2.372
ISSN:0254-3087
年,卷(期):2024.45(3)
  • 35