首页|面向变工况下工业流数据故障诊断的持续迁移学习系统

面向变工况下工业流数据故障诊断的持续迁移学习系统

扫码查看
机器学习模型在智能故障诊断中取得了显著成功,但主要应用于静态场景。在实际场景中,新的故障类别数据以流形式不断产生,且数据分布随机械设备运行条件变化而发生变化,导致连续流数据具有非独立同分布的特征,这种面向非独立同分布连续流数据的诊断问题被称为持续迁移诊断问题。针对此问题,本文提出了一种基于持续迁移学习系统(CTLS)的故障诊断方法。该方法设计了域适应学习损失函数和持续迁移学习机制,能有效处理变工况下的工业流数据,无需重放旧类别数据便能够能学习新类别知识。此外,利用机械故障诊断案例评估该方法的性能,分析结果证明CTLS能够高效处理变工况条件下的工业流数据,是一种极具潜力的解决实际工业问题的可靠工具。
Continuous transfer learning system for fault diagnosis of industrial stream data under variable operating conditions
Machine learning models have achieved remarkable success in intelligent fault diagnosis,but are mainly applied in static environments.In practical scenarios,new fault category data arrives continuously in the form of streams,and the distribution of the data changes due to changes in the operating conditions of the machinery and equipment,resulting in a continuous stream of data characterized by non-independent homogeneous distribution.This diagnostic problem of non-independently and identically distributed continuous stream data is called the continuous transfer diagnostic problem.To solve this problem,a continuous transfer learning system(CTLS)fault diagnosis method is proposed.The method includes a domain-adaptive learning loss function and a continuous transfer learning mechanism,which can efficiently handle industrial streaming data and learn new categories without replaying old category data.Moreover,a mechanical failure case evaluations validate the performance of the method,and analysis results show that CTLS can effectively handle industrial streaming data under different working conditions and is a promising tool for solving real industrial problems.

continuous transfer learningindustrial stream datafault diagnosisrotating machinery

石明宽、丁传仓、王锐、黄伟国、朱忠奎

展开 >

苏州大学轨道交通学院 苏州 215131

持续迁移学习 工业流数据 故障诊断 旋转机械

国家自然科学基金国家自然科学基金江苏省自然科学基金

5227515752205119BK20220497

2024

仪器仪表学报
中国仪器仪表学会

仪器仪表学报

CSTPCD北大核心
影响因子:2.372
ISSN:0254-3087
年,卷(期):2024.45(4)