首页|小天体表面着陆区岩石目标检测算法

小天体表面着陆区岩石目标检测算法

扫码查看
针对暗弱环境下小天体表面岩石轮廓特征不明显及岩石尺寸小而造成的难检测问题,提出了一种小天体表面着陆区岩石目标检测方法及模型。将多头自注意力机制融入YOLOv8x框架,用于提高模型获取图片全局视野的能力,增强模型对深空环境中不同光照条件下岩石特征的自适应性;在此基础上增加小目标检测层,用于提升模型对小尺寸岩石的关注度,增强模型对不同尺寸岩石的自适应性。对比实验结果表明,方法相较于改进前算法,岩石检测准确率、召回率和平均检测精度分别提升了 6。4%、3%、5%,与其他主流目标检测算法相比,指标也得到明显提升。该方法为暗弱环境下小天体表面着陆区岩石的自主识别提供了理论和技术基础。
Algorithm of detection rock object in landing zone of small celestial body surface
In response to the challenging issue of indistinct surface rock contours and difficulties in detecting small-sized rocks in dim environments on small celestial bodies,a method and model for rock target detection in landing areas on small celestial body surfaces is proposed.This approach integrates a multi-head self-attention mechanism into the YOLOv8x framework to enhance the model's capability to capture the global view of images,thereby improving its adaptability to different lighting conditions in deep space environments.Additionally,a small object detection layer is added to the model to increase its focus on small-sized rocks,enhancing its adaptability to rocks of varying sizes.Comparative experimental results demonstrate that compared to the original algorithm,the proposed method achieves improvements of 6.4% in rock detection precision,3% in recall rate,and 5% in mean average precision.Furthermore,compared with other mainstream object detection algorithms,the proposed method shows significant improvements in performance metrics.This method provides a theoretical and technical foundation for the autonomous identification of rocks in landing areas on small celestial body surfaces in dim environments.

rocks detection on small body surfacedeep learningmulti-head self-attentionsmall object detectionmulti-scale feature fusion

冯哲、王彬、黄鹏程、熊新、金怀平

展开 >

昆明理工大学信息工程与自动化学院 昆明 650500

昆明理工大学人工智能产业学院 昆明 650500

昆明理工大学云南省人工智能重点实验室 昆明 650500

小天体表面岩石检测 深度学习 多头自注意力机制 小目标检测 多尺度特征融合

民用航天预研项目空间碎片专项

KJSP2020020302

2024

仪器仪表学报
中国仪器仪表学会

仪器仪表学报

CSTPCD北大核心
影响因子:2.372
ISSN:0254-3087
年,卷(期):2024.45(4)