仪器仪表学报2024,Vol.45Issue(5) :10-19.DOI:10.19650/j.cnki.cjsi.J2312289

基于多通道特征融合学习的印制电路板小目标缺陷检测

Small defects detection of PCB based on multi-channel feature fusion learning

张莹 邓华宣 王耀南 吴成中 吴琳
仪器仪表学报2024,Vol.45Issue(5) :10-19.DOI:10.19650/j.cnki.cjsi.J2312289

基于多通道特征融合学习的印制电路板小目标缺陷检测

Small defects detection of PCB based on multi-channel feature fusion learning

张莹 1邓华宣 1王耀南 2吴成中 3吴琳1
扫码查看

作者信息

  • 1. 湘潭大学自动化与电子信息学院 湘潭 411105
  • 2. 机器人视觉感知与控制技术国家工程研究中心 长沙 410082
  • 3. 机器人视觉感知与控制技术国家工程研究中心 长沙 410082;江西省通讯终端产业技术研究院有限公司 吉安 343099
  • 折叠

摘要

提出了一种多通道特征融合学习的印制电路板小目标缺陷检测网络YOLOPCB,首先删除YOLOv7 主干网络中最后一组MPConv层与E-ELAN层,去掉融合层的ECU模块与20×20 的预测头,使用跨通道信息连接模块串联精简后的主干和融合网络;其次设计了浅层特征融合模块与新的anchors匹配策略,增加了两个低层次、高分辨率检测头;最后将YOLOv7 主干网络中的 3 个E-ELAN作为输入,将融合层中最底部的E-ELAN和两个拼接模块作为输出,使用自适应加权跳层连接以增加同维度内信息量.在 PCB Defect 公开数据集上平均精度达到 94.9%,检测速度达到 45.6 fps;最后在企业现场制作的Self-PCB数据集中,YOLOPCB达到了最高精度 76.7%,比YOLOv7 检测精度提升了 6.8%,能有效提高印制电路板小目标缺陷检测能力.

Abstract

The paper proposes a YOLOPCB network for small defects detection on printed circuit board(PCB)using multi-channel feature fusion learning.Firstly,the last group of MPConv layer and E-ELAN layer in the YOLOv7 backbone network are removed,and the ECU module in the fusion layer and the 20×20 prediction head are eliminated.A cross-channel information connection module(CIC)is utilized to link the streamlined backbone and fusion networks.Secondly,a shallow feature fusion module(SFF)and a new anchor matching strategy are designed,which add two low-level,high-resolution detection heads.Lastly,the three E-ELAN layers in the YOLOv7 backbone network are used as inputs,while the bottommost E-ELAN and two concatenation modules in the fusion layer are used as outputs,with adaptive weighted skip-connection(AWS)to increase the information within the same dimension.The average precision on the PCB Defect datasets reaches 94.9%,with a detection speed of 45.6 fps.Furthermore,on the Self-PCB datasets obtained from on-site enterprises,YOLOPCB achieves the highest accuracy of 76.7%,which is a 6.8%improvement over the detection accuracy of YOLOv7.YOLOPCB effectively enhances the detection capability of small defects on printed circuit boards.

关键词

印制电路板/小目标检测/图像特征提取/多特征融合/自适应加权融合算法

Key words

printed circuit boards/small target detection/image feature extraction/multi-feature fusion/adaptive weight fusion algorithm

引用本文复制引用

出版年

2024
仪器仪表学报
中国仪器仪表学会

仪器仪表学报

CSTPCD北大核心
影响因子:2.372
ISSN:0254-3087
段落导航相关论文