首页|随机工况下基于改进ANFIS的锂电池容量衰减实时估计

随机工况下基于改进ANFIS的锂电池容量衰减实时估计

扫码查看
锂电池容量的衰减会影响其安全性和稳定性,准确的容量估计能够帮助用户进行更好的决策。目前,广泛使用的黑盒数据驱动模型因其不可解释性很难被应用于安全相关的领域中,并且大多方法都基于固定工况进行特征提取,对具有随机性的实际工况不具有普适性。因此,本文构建了一种基于随机工况数据的改进自适应模糊神将网络推理系统(ANFIS)。首先分析了容量衰减的影响因素,据此从电池监测数据中提取和筛选健康特征;其次系统内部利用激活机制简化系统结构,并引入衰减系数更好地拟合电池单体特性;然后通过自适应粒子滤波算法优化模糊聚类中心;最后使用NASA随机工况数据集验证了该系统的有效性,其容量估计RMSE为 3。73%。与其他方法相比,本文提出的方法结果精度更高且具有一定的可解释性。
Real-time estimation of lithium battery capacity degradation based on an improved neural fuzzy inference system under random operating conditions
The decline in lithium battery capacity can compromise its safety and stability,emphasizing the importance of accurate capacity estimation for better decision-making.However,prevailing black-box data-driven models face challenges in safety-critical applications due to their lack of interpretability.Additionally,these models often rely on fixed operating conditions for feature extraction,limiting their suitability for real-world scenarios with variable conditions.To address these issues,this paper presents an enhanced adaptive neural fuzzy inference system(ANFIS)designed to accommodate random operating conditions.Firstly,the factors influencing capacity degradation are analyzed,and relevant features are extracted and refined from battery measurement data.Subsequently,an activation mechanism simplifies the system structure,while an attenuation coefficient is introduced to tailor the model to battery cell characteristics.Further refinement is achieved through continuous optimization of fuzzy clustering centers using an adaptive particle filter algorithm.Validation of the system is conducted using the NASA random walk battery dataset,resulting in a capacity estimation root mean square error(RMSE)of 3.73%.Comparative analysis demonstrates that the proposed system offers superior accuracy and a degree of interpretability when contrasted with other methods.

Lithium-ion batteryfuzzy inference systemcapacity estimationinterpretability

刘彤宇、陆起涌、李旦、张建秋、王开铟

展开 >

复旦大学电子工程系 上海 200433

复旦大学义乌研究院 义乌 322001

锂电池 模糊推理系统 容量估计 可解释性

2024

仪器仪表学报
中国仪器仪表学会

仪器仪表学报

CSTPCD北大核心
影响因子:2.372
ISSN:0254-3087
年,卷(期):2024.45(5)