首页|基于局部能量密度的中介轴承故障特征提取与诊断方法

基于局部能量密度的中介轴承故障特征提取与诊断方法

扫码查看
针对航空发动机中介轴承振动信号在复杂传递路径和强背景噪声条件下的故障特征提取难题,本文提出了一种基于局部能量密度(LED)的中介轴承故障特征提取与诊断方法。首先,采用奇异谱分析对故障信号进行初步的降噪处理,并通过基于余弦值的方法确定最优的重构阶次,以保留信号中的关键故障信息。接着,引入新指标LED,用于量化故障特征频率及其谐波在局部频率范围内的能量比例。该指标不仅能有效提取微弱的故障特征,而且对于实际故障频率与理论故障频率之间可能存在的偏差表现出较强的鲁棒性。以LED作为适应度函数,通过人工蜂鸟算法优化的最大相关峭度解卷积(MCKD)增强奇异谱分析降噪后信号中的故障特征。最后,通过包络谱分析完成故障诊断。本文通过中介轴承故障模拟实验和加噪实验验证了所提方法的有效性,实验结果表明,与现有的故障诊断技术相比,本文所提出的方法的故障特征系数(FFC)和 LED分别增加20。7%~218%和 22。9%~134%。在 0 dB,-4 dB和-10 dB噪声条件下,该方法仍准确地识别到外圈故障的特征频率及倍频,表明所提出的SSA_MCKD能有效降低信号噪声并提取滚动轴承的故障特征。
Local energy density-based method for intermediary bearing fault feature extraction and diagnosis
Addressing the challenge of extracting fault characteristics from vibration signals of inter-shaft bearings in aeroengine amidst complex transmission paths and strong background noise,this paper proposes a method based on local energy density(LED)for fault feature extraction and diagnosis.Initially,singular spectrum analysis is employed for preliminary noise reduction of the fault signals and optimal reconstruction order determination using a cosine-based approach to preserve crucial fault information within the signal.Subsequently,a novel metric,LED,is introduced to quantify the energy ratio of fault characteristic frequencies and their harmonics within a local frequency range.This metric not only effectively extracts subtle fault features but also demonstrates robustness against deviations between actual and theoretical fault frequencies.Utilizing LED as the fitness function,the method enhances fault features in the denoised signal through maximum correlation kurtosis deconvolution(MCKD)optimized by the artificial hummingbird algorithm.Fault diagnosis is achieved through envelope spectrum analysis.The effectiveness of the proposed method is validated through intermediary bearing fault simulation and noise addition experiments,showing a 20.7%to 218%increase in the fault feature coefficient(FFC)and a 22.9%to 134%increase in LED compared to existing fault diagnosis techniques.The method accurately identifies the characteristic frequencies and harmonics of outer race faults under noise conditions of 0 dB,-4 dB,and-10 dB,indicating that the proposed SSA_MCKD can effectively reduce the influence of signal noise and extract fault features of rolling bearing.

inter-shaft bearingsingular spectrum analysismaximum correlation kurtosis deconvolutionlocal energy densityartificial hummingbird algorithmfault diagnosis

栾孝驰、郝冠丞、沙云东、张振鹏、赵奉同

展开 >

沈阳航空航天大学航空发动机学院 沈阳 110136

北京科技大学机械工程学院 北京 100083

中介轴承 奇异谱分析 最大相关峭度解卷积 局部能量密度 人工蜂鸟算法 故障诊断

2024

仪器仪表学报
中国仪器仪表学会

仪器仪表学报

CSTPCD北大核心
影响因子:2.372
ISSN:0254-3087
年,卷(期):2024.45(5)