首页|基于扩展卡尔曼滤波的疏散行人密度预测算法研究

基于扩展卡尔曼滤波的疏散行人密度预测算法研究

扫码查看
疏散效率的提升是疏散系统研究的核心关注点.由于疏散系统通常呈现局部可观测性,而异常的局部观测信息会降低疏散效率,因此需对观测信息进行预测校正.为此,提出一种基于扩展卡尔曼滤波的人员密度信息预测校正算法.该算法采用神经网络拟合方法对扩展卡尔曼滤波算法中状态函数和观测函数的参数进行辨识,完成非线性疏散系统的近似线性化,提高了建模的精度;同时算法通过误差协方差矩阵的迭代更新机制实现疏散人员密度的快速预测和校正.在此基础上,还结合密度控制算法构建异常疏散场景下的行人流疏散控制策略.为验证所提算法的有效性,在设计和构建异常疏散场景仿真模型的基础上进行了对比仿真和真人疏散可控实验.结果表明,相较无数据校正的疏散控制策略,算法在异常疏散仿真和真人可控场景中分别获得最高 38.9%和 23.26%的效率提升,为异常疏散场景中的控制策略提供了有效的解决思路.
Research on the evacuation pedestrian density prediction algorithm based on extended Kalman filter
Enhancing evacuation efficiency is of paramount importance in the field of evacuation systems research.Evacuation systems often present observability limitations,and any abnormal observation of pedestrian density at the exits can diminish the effectiveness of evacuation control.Therefore,correcting the abnormal observation information at exits becomes imperative for improving evacuation performance.To address this issue,an algorithm based on the extended Kalman filter is proposed to predict pedestrian density,and a correlation mapping between normal and abnormal pedestrian densities is established.The algorithm incorporates a neural network fitting method to identify the parameters of the state and observation functions in the extended Kalman filter algorithm,enhancing the accuracy of system modeling by approximating nonlinearity.Moreover,an iterative update mechanism utilizing the error covariance matrix allows for fast prediction and correction of pedestrian density.Additionally,the algorithm incorporates a density control algorithm to formulate a pedestrian flow evacuation control strategy for abnormal evacuation scenarios.Comparative simulations are conducted by using the evacuation model in abnormal evacuation scenarios to evaluate the effectiveness of the proposed algorithm.The results show that,compared to the evacuation control strategy without data correction,the proposed algorithm achieves efficiency improvements of up to 38.9%and 23.26%in abnormal evacuation simulation and human-controllable scenarios,respectively,which provides an effective solution approach for control strategies in abnormal evacuation scenarios.

pedestrian evacuationsystem identificationextended Kalman filterpedestrian flow density predictionevacuation simulation

高凤强、王若宇、曹光求、刘暾东

展开 >

厦门大学萨本栋微米纳米科学技术研究院 厦门 361102

厦门大学嘉庚学院 漳州 363105

行人疏散 系统辨识 扩展卡尔曼滤波 行人流密度预测 疏散仿真

2024

仪器仪表学报
中国仪器仪表学会

仪器仪表学报

CSTPCD北大核心
影响因子:2.372
ISSN:0254-3087
年,卷(期):2024.45(5)