首页|基于自编码器模型在复杂噪声环境中无监督式结构损伤检测算法的改进

基于自编码器模型在复杂噪声环境中无监督式结构损伤检测算法的改进

扫码查看
结构健康监测广泛应用于户外环境中,尤其是恶劣条件中的结构监测。这些恶劣的运行环境会使监测系统受到噪声的干扰。因此,设计有效的降噪策略以增强在噪声环境中利用导波进行损伤结构检测的性能至关重要。介绍了一种基于时序主成分分析(PCA)重构信号的方法用于降低波导的噪声,并将降噪后的信号与基于改进后的自编码器重建的模型来实现无监督损伤检测。对该降噪算法以及基于自编码器的无监督损伤检测模型的有效性在信噪比10 dB降到-5 dB的环境中进行了测试。实验结果表明,所提出的降噪方法能够显著提高噪声环境中损伤检测性能,在信噪比为-5 dB的噪声环境中实现AUC score从0。65提升到0。96。与此同时,还提供了用于降噪的PCA重构信号中的主成分选择的策略,用于实现优化降噪以及无监督的损伤检测。
Improving autoencoder-based unsupervised damage detection in uncontrolled structural health monitoring under noisy conditions
Structural health monitoring is widely utilized in outdoor environments,especially under harsh conditions,which can introduce noise into the monitoring system.Therefore,designing an effective denoising strategy to enhance the performance of guided wave damage detection in noisy environments is crucial.This paper introduces a local temporal principal component analysis(PCA)reconstruction approach for denoising guided waves prior to implementing unsupervised damage detection,achieved through novel autoencoder-based reconstruction.Experimental results demonstrate that the proposed denoising method significantly enhances damage detection performance when guided waves are contaminated by noise,with SNR values ranging from 10 to-5 dB.Following the implementation of the proposed denoising approach,the AUC score can elevate from 0.65 to 0.96 when dealing with guided waves corrputed by noise at a level of-5 dB.Additionally,the paper provides guidance on selecting the appropriate number of components used in the denoising PCA reconstruction,aiding in the optimization of the damage detection in noisy conditions.

structural health monitoringguided wavesprincipal component analysisdeep learningdenoisingdynamic environmental condition

杨抗、王淋元、高超、陈默之、周敦之、刘洋

展开 >

佛罗里达大学电子信息与计算机工程学院 盖恩斯维尔32611

天普大学电子信息与计算机工程学院费城 19122

天津大学精密仪器与光电子工程学院 天津 300072

结构健康监测 导波 主成分分析 深度学习 降噪 动态环境

National Science Foundation of Zhejiang under Contract

LY23EO10001

2024

仪器仪表学报
中国仪器仪表学会

仪器仪表学报

CSTPCD北大核心
影响因子:2.372
ISSN:0254-3087
年,卷(期):2024.45(6)