首页|基于深度学习的兰姆波SCF-TFM超分辨率成像

基于深度学习的兰姆波SCF-TFM超分辨率成像

扫码查看
腐蚀和裂纹是结构板常见的缺陷形式,兰姆波在非贯穿型损伤处发生模式转换是制约兰姆波成像质量的主要因素。此外,声波衍射遵循瑞利准则,超声成像存在分辨率极限。本文设计了一个全卷积神经网络对接收信号进行分割与重构,实现目标模态的自动拾取,抹除杂波和模式转换的干扰。提出符号相干因子全聚焦成像法(SCF-TFM),在全矩阵聚焦成像过程中施加符号相干因子,抑制非目标区域散射波对成像结果的干扰,同时考虑散射信号的幅值及相位信息,可以一定程度上突破瑞利准则的限制,实现超分辨率成像。实验结果表明:对于单个盲孔缺陷,该方法成像结果的横向分辨率比全聚焦提高62。41%,信噪比提升58。23%;而对于多个非对称盲孔缺陷,当缺陷间距大于瑞利准则分辨率极限时,该方法的信噪比提高了 92。89%;缺陷间距小于瑞利准则分辨率极限时,该方法可以实现超分辨率成像。
Lamb wave SCF-TFM super resolution imaging based on deep learning
Corrosion and cracks are common defects in structural plates.The mode conversion of Lamb waves at these non-perforating damages is a primary factor limiting the quality of Lamb wave imaging.Meanwhile,acoustic diffraction adheres to the Rayleigh criterion,leading to resolution limits in ultrasonic imaging.This paper designed a fully convolutional network to segment and reconstruct the received signals,enabling the automatic extraction of target modes and eliminating interference from clutter and mode conversions.Additionally,a sign coherence factor-total focusing method(SCF-TFM)is proposed,where the symbolic coherence factor is applied during the total focus method imaging process,suppressing the interference from scattered waves in non-target regions.By considering both amplitude and phase information of the signals,it can partially overcome the limitations of the Rayleigh criterion,achieving super-resolution imaging.Experimental results demonstrate that for a single blind-hole defect,the lateral resolution of the imaging result using this method is 62.41%higher than that of total focus method,and the signal-to-noise ratio(SNR)is increased by 58.23%.For multiple asymmetric blind-hole defects,when the spacing between defects exceeds the Rayleigh resolution limit,the signal-to-noise ratio improves by 92.89%using this method.When the spacing is below the Rayleigh resolution limit,this method can achieve super-resolution imaging.

Lamb wavesasymmetric blind hole defectsfully convolutional networksSCF-TFMsuper-resolution imaging

孙刘家、韩庆邦、靳琪琳、葛考

展开 >

河海大学信息科学与工程学院 常州 213200

兰姆波 非对称盲孔缺陷 全卷积神经网络 SCF-TFM 超分辨率成像

国家自然科学基金江西省研究生科研与实践创新计划项目

12174085KYCX24_0833

2024

仪器仪表学报
中国仪器仪表学会

仪器仪表学报

CSTPCD北大核心
影响因子:2.372
ISSN:0254-3087
年,卷(期):2024.45(6)