首页|基于超声导波虚拟时间反转的多层异质金属粘接结构损伤定位

基于超声导波虚拟时间反转的多层异质金属粘接结构损伤定位

扫码查看
多层异质金属粘接结构由于其优异的比强度,被广泛用于承压设备,船舶,核装备等关键领域的核心部件,其长期服役在复杂苛刻的环境中,难免产生各种缺陷和损伤,进而影响装备服役安全.超声导波检测是一种潜在的无损检测方法,但是多层金属粘接结构中金属与非金属粘接层之间阻抗差异大,导致Lamb波传播特性复杂,很难通过基于时间信息的导波定位方法进行缺陷的检测和定位.故本文提出一种适用于多层结构的损伤存在概率成像方法并结合虚拟时间反转技术,对多层异质金属粘接结构的内表面缺陷进行无基准的检测和定位.结果表明,在几何尺寸为300 mm的板中,定位的缺陷坐标和实际缺陷位置中心坐标仅仅相差2.74 mm,实现了对多层异质金属粘接结构内表面损伤的精准定位成像.
Damage localization in multilayer heterogeneous metal bonded structures based on virtual time reversal of ultrasonic guided wave
Due to its excellent specific strength,multilayer heterogeneous metal bonded structures are widely used as core components in key areas such as pressurized equipment,ships,and nuclear equipment,etc.Their long-term service in complex and harsh environments inevitably produces a variety of defects and damages,which in turn affects the safety of equipment in service.Ultrasonic guided wave inspection is a potential non-destructive testing method.However,the impedance difference between metal and non-metal bonding layers in multi-layer metal bonding structures complicates the propagation characteristics of Lamb waves,making defect detection and localization using time-based guided wave methods challenging.Therefore,this paper proposes a probabilistic imaging method of damage existence applicable to multilayer structures and combines it with the virtual time reversal technique to detect and localize the defects on the inner surfaces of multilayer heterogeneous metal-bonded structures without benchmarks.The results show that in a plate with a geometry of 300 mm,the difference between the coordinates of the localized defects and the center coordinates of the actual defect location is only 2.74 mm,which realizes the accurate localization of the damage on the inner surface of the multilayered heterogeneous metal bonded structure.

multilayer heterogeneous metal bonded structuresvirtual time reversaldamage indexdefect localization

刘稳、刘立帅、项延训、轩福贞

展开 >

华东理工大学上海市智能感知与检测技术重点实验室 上海 200237

多层异质金属粘接结构 虚拟时间反转 损伤指数 缺陷定位

国家重点研发计划国家自然科学基金国家自然科学基金

2021YFC30018021232780712025403

2024

仪器仪表学报
中国仪器仪表学会

仪器仪表学报

CSTPCD北大核心
影响因子:2.372
ISSN:0254-3087
年,卷(期):2024.45(6)