首页|基于广义可扩展RPCA滤波的超快超声脑血流与功能成像方法研究

基于广义可扩展RPCA滤波的超快超声脑血流与功能成像方法研究

扫码查看
开发高分辨和高灵敏度的小血管可视化技术,对相关组织病变的早期诊断和治疗监测具有重要的临床意义.不同于传统聚焦超声,超快超声多普勒(µDoppler)成像技术凭借数千帧的成像帧率,可检测到小血流的瞬时变化.组织杂波滤除和噪声抑制对于µDoppler的成像质量至关重要.常用的杂波滤除方法为奇异值分解(SVD)方法,该方法利用信号时空相干性差异可快速实现组织杂波和血流信号分离,然而无法有效抑制噪声.本研究创新性提出了一种基于广义可扩展的鲁棒主成分分析(GSRPCA)的杂波滤除方法,使用Schatten p范数和lq范数来加强鲁棒主成分分析(RPCA)模型的低秩约束和稀疏约束,增强了小血流信号的提取能力.大鼠脑血流成像结果表明,GSRPCA能够提升功率多普勒成像中血管的成像质量,相较SVD提高信噪比约20 dB,且提高对比噪声比约10 dB.大鼠超声脑功能成像结果表明,GSRPCA能够提升小血管血容量动态检测的灵敏度.相关方法对超快超声成像杂波滤除的研究具有一定借鉴意义.
Ultrafast ultrasound cerebral vascular imaging and functional imaging based on generalised scalable RPCA filtering
The development of high-resolution and highly sensitive small blood vessels visualization methods has great clinical significance for the early diagnosis and treatment monitoring of related tissue lesions.Different from traditional focused ultrasound,ultrafast ultrasound Doppler(μDoppler)imaging can detect instantaneous changes of small flows due to the framerate of several thousands.Effective tissue clutter filtering and noise suppression methods are crucial to the quality of µDoppler imaging.The commonly used clutter filtering method is the singular value decomposition(SVD)method.SVD can separate tissue clutter and blood flow signal quickly by utilizing the difference in spatiotemporal coherence of components.However,it cannot effectively suppress noise.Here we propose a novel clutter filtering method based on generalised scalable robust principal component analysis(GSRPCA),using Schatten p norm and lq norm to strengthen the low-rank constraint and sparse constraint of the RPCA model,and enhance the extraction of blood flow signal.Rat cerebral blood flow imaging results demonstrate that GSRPCA can improve the imaging quality of blood vessels in power Doppler imaging,improving SNR by about 20 dB and improving CNR by about 10 dB compared with SVD.The results of brain functional ultrasound imaging shows that GSRPCA can improve the sensitivity of blood volume changes in small vessels.Relevant methods facilitate the study on clutter filtering methods in ultrafast ultrasound imaging.

ultrafast ultrasoundclutter filteringgeneralized scalable RPC A(GSRPCA)brain blood vesselsfunctional imaging

吴浩田、闫少渊、许凯亮、他得安

展开 >

复旦大学生物医学工程系 上海 200438

复旦大学脑科学前沿科学中心 上海 200432

复旦大学集成芯片与系统全国重点实验室 上海 201203

上海波达医疗科技有限公司 上海 200433

展开 >

超快超声 杂波滤除 广义可扩展RPCA 脑血流 功能成像

国家重点研发计划上海市国际科技合作项目

2023YFC241090023490713500

2024

仪器仪表学报
中国仪器仪表学会

仪器仪表学报

CSTPCD北大核心
影响因子:2.372
ISSN:0254-3087
年,卷(期):2024.45(6)