首页|基于最优频段循环脉冲指数谱的轴承故障诊断方法

基于最优频段循环脉冲指数谱的轴承故障诊断方法

扫码查看
针对滚动轴承多故障冲击共振频带的非一致性及相互交叠影响问题,提出了一种基于循环脉冲指数(CPI)谱的轴承多故障同步诊断方法.该方法引入短时脉冲峰值矩的变异系数对轴承故障冲击进行量化表征,结合冗余提升小波包对轴承故障信号进行频带塔式分解与频带信号CPI计算,构建了故障信号的CPI比值谱图(CPIRgram);根据CPI比值最大原则对轴承故障信号的最优共振频带进行自适应选择,并采用最优频段循环脉冲谱对轴承各故障特征频率进行了统一表征.仿真与故障试验分析结果表明,本文方法无需故障先验知识与分解参数的优化设置,在强噪声及随机瞬态干扰情况下,也能够准确地对多故障特征频率进行同步检测,检测出的故障频率与其理论值误差均小于1.6 Hz,且对故障冲击强度大小及冲击模式变化具有较好的鲁棒性,有较好的应用前景.
Bearing fault diagnosis method based on cyclic pulse index spectrum of optimal band
To address the problem of non-consistency and overlapping influence of multi-fault impact resonance bands of rolling bearings,a synchronous diagnosis method for multi-fault bearings based on the cyclic pulse index(CPI)spectrogram is proposed.Firstly,the variation coefficient of the short-time pulse peak moment is taken as the cyclic pulse index to quantitatively characterize the cyclic periodicity and impulsiveness of bearing fault impacts.Then,by combining the frequency band tower decomposition of adaptive redundant lifting wavelet packet with the CPI calculation for the individual frequency band signals,the CPI ratio spectrogram(CPIRgram)is constructed.The optimal resonance band of bearing fault signal is adaptively selected according to the principle of the maximum CPI ratio.Finally,the cyclic pulse spectrum is employed to uniformly characterize each fault feature frequency of the bearing.The simulation and fault test results show that this method does not require prior knowledge of faults or optimization of decomposition parameters.It can accurately detect multiple fault feature frequencies even in the presence of strong noise and random transient interference.The detected fault frequencies show an error of less than 1.6 Hz compared to their theoretical values.Additionally,the method demonstrates good robustness to variations in fault impact intensity and impact mode,indicating strong potential for practical applications.

bearing fault diagnosisoptimal band selectionmaximum cyclic pulse indexcyclic pulse index spectrum

刘小峰、李俊锋、毕远亮、柏林

展开 >

重庆大学高端装备机械传动全国重点实验室 重庆 400044

轴承故障诊断 最优频段选择 最大循环脉冲指数 循环脉冲谱

国家科技重大专项国家自然科学基金项目

J2019-Ⅳ-0001-006852175077

2024

仪器仪表学报
中国仪器仪表学会

仪器仪表学报

CSTPCD北大核心
影响因子:2.372
ISSN:0254-3087
年,卷(期):2024.45(6)