首页|基于多传感器的紧耦合三维室内定位与建图

基于多传感器的紧耦合三维室内定位与建图

扫码查看
即时定位与地图构建(SLAM)因其可以解决未知环境中的定位与地图构建问题,广泛应用于移动机器人领域。本文使用雷达、相机、IMU和轮式里程计提出了一种名为3D-MultiFus的SLAM方法。其中雷达-IMU-里程计子系统(Ls)快速构建全局地图的几何结构,通过最小化点到平面误差估计系统位置状态。相机-IMU-轮式里程计子系统(Vs)可剔除被遮挡或深度不连续的特征点,以最小化帧间地图光度误差进一步估计位姿状态,并可实现子图中点云地图的着色渲染。IMU与里程计融合后的数据、雷达系统点到平面误差和相机系统中光度误差以基于误差状态的迭代卡尔曼方式(ESIKF)实现数据紧耦合,从而在保证精度和鲁棒性的同时,实现快速定位与建图。为了验证本文算法的定位与建图精度,布置了室内运动实验场景并将3D-MultiFus算法与相关算法比较。仿真和实验结果表明,3D-MultiFus算法完成一次数据处理需185 ms,在运行效率上优于其他算法。在复杂的室内场景下,长时间运行定位首末位置误差仅0。085 6 m,3D-MultiFus移动机器人的全局地图精度得到了较大的提升,所构建的全局地图具有较好的一致性。证明了所提出算法能够在室内场景中稳健可靠的工作。
Tightly coupled 3D indoor SLAM based on multi-sensor
Simultaneous Localization and Mapping(SLAM)is widely used in the field of mobile robots since it can solve the problem of localization and mapping in unknown environments.This paper proposes a SLAM method named 3D-MultiFus,utilizing radar,camera,IMU,and wheel odometry.The radar-IMU-odometry subsystem(Ls)rapidly constructs the geometric structure of global map by minimizing point-to-plane errors to estimate the system's positional state.Meanwhile,the camera-IMU-wheel odometry subsystem(Vs)removes occluded or depth-discontinuous feature points to minimize inter-frame map photometric errors,which further estimates the pose state and enables color rendering of the point cloud map within the sub-map.The tightly coupled data resulting from the fusion of IMU and odometry,radar system's point-to-plane errors,and camera system's photometric errors are processed using an error-state-based iterative Kalman filter(ESIKF),ensuring precision and robustness while simultaneously achieving rapid localization and mapping.To validate the localization and mapping accuracy of proposed algorithm,the 3D-MultiFus algorithm was compared with related algorithms based on an established indoor motion experimental scenario.Simulation and experimental results demonstrate that the 3D-MultiFus algorithm completes data processing in 185 ms,outperforming the operational efficiency of other algorithms.The long-term positional error between the initial and final positions is merely 0.085 6 m in complex indoor scenarios,significantly enhancing the global map accuracy of the 3D-MultiFus mobile robot.The constructed global map exhibits excellent consistency,validating the robust and reliable performance of the proposed algorithm in indoor environments.

multi-sensortight coupling3D-SLAMiteration Kalman based on error stateefficiency and precision

李春磊、陈久朋、伞红军、李曰阳、彭真

展开 >

昆明理工大学机电工程学院 昆明 650500

云南省先进装备智能制造技术重点实验室 昆明 650500

山东农业工程学院机械电子工程学院 济南 250100

多传感器 紧耦合 三维SLAM 基于误差状态的迭代卡尔曼 效率与精度

云南省基础研究计划-青年基金项目

202301AU070059

2024

仪器仪表学报
中国仪器仪表学会

仪器仪表学报

CSTPCD北大核心
影响因子:2.372
ISSN:0254-3087
年,卷(期):2024.45(7)