首页|基于标签伯努利滤波技术的多机器人随机组网协同导航

基于标签伯努利滤波技术的多机器人随机组网协同导航

扫码查看
针对多机器人在间歇性观测或无绝对观测环境下的分布式协同导航问题,提出了一种基于标签伯努利滤波技术的多机器人随机组网协同导航算法(GS-EPF-LMB).该算法通过时间更新、观测更新和显示通信3种状态更新策略,利用随机有限集对状态和观测进行建模,并生成标签化的多伯努利粒子.为了提高算法的一致性和定位精度,基于标签多伯努利粒子耦合相对观测和绝对观测,采用粒子滤波器优化带有标签的粒子状态,并利用历史信息对状态估计进行约束.此外,利用概率数据关联实现导航系统状态估计,并通过分层高斯模型和变分贝叶斯方法实现全局最优状态估计.实验结果表明,算法的定位精度达到0.11 m,相较于全局状态-协方差交(GS-CI)算法,定位状态协方差收敛性提高了 48.6%,精度提高了 11%.
Cooperative navigation algorithm for multi-robot stochastic networking based on labelled Bernoulli filtering
In this paper,a stochastic networking algorithm based on global state extended kalman-based particle filter on labeled multi-Bernoulli(GS-EPF-LMB)is proposed for distributed cooperative navigation of multiple robots in intermittent observation or no absolute observation environments.The algorithm models the states and observations using random finite sets and generates labeled multi-Bernoulli particles through three state update strategies:time update,observation update,and display communication.To improve the consistency and localization accuracy of the algorithm,this paper couples relative and absolute observations based on labeled multi-Bernoulli particles,using particle filters to optimize the labeld particle states and constrain state estimation with historical information.In addition,it employs probabilistic data correlation for navigation system state estimation and uses a hierarchical Gaussian model combined with variational Bayesian methods to achieve globally optimal state estimation.The experimental results show that the proposed algorithm achieves a localization accuracy of 0.1 1 m.The convergence of localization state covariance is improved by 48.6%and the accuracy is increased by 11%compared with the GS-CI algorithm.

multi-robotcooperative navigationlabeled bernoulli filterexplicit communicationrandom networking

陈红梅、王海锋、叶文、张筱南

展开 >

河南工业大学电气工程学院 郑州 450001

中国计量科学研究院 北京 100029

郑州中科集成电路与系统应用研究院北斗PNT技术研究中心 郑州 450001

多机器人 协同导航 标签化伯努利滤波器 显示通信 随机组网

国家自然科学基金国家自然科学基金中国博士后科学基金中国博士后科学基金河南省科技攻关河南省科协海智计划河南工业大学青年骨干教师培育计划河南工业大学自科创新基金支持计划

U1804161619014312020M6704132020T130625222102210269214201692021ZKCJ07

2024

仪器仪表学报
中国仪器仪表学会

仪器仪表学报

CSTPCD北大核心
影响因子:2.372
ISSN:0254-3087
年,卷(期):2024.45(7)
  • 2