首页|基于全方位深层加权轻量化网络的冠脉造影图像超分辨率重建方法

基于全方位深层加权轻量化网络的冠脉造影图像超分辨率重建方法

扫码查看
针对介入手术中对冠状动脉造影图像纹理清晰的需求,本文提出一种基于全方位深层加权轻量化网络的超分辨率图像重建方法。首先通过设计局部卷积模块,降低特征图的维度减小其参数量,加快模型的处理速度;接着采用自注意力机制模块,融合图像的通道和空间信息,获得图像的丰富高频细节特征;此外,为了进一步提取图像的深层特征信息,研究设计了级联和权重匹配的层注意力结构,为图像不同深度的特征分配不同的权重,实现图像的超分辨率重建。最后为了使本文所研究方法在真实介入手术冠脉造影图像中有更强的泛化能力,本文构建了冠脉造影图像数据集(CAID)用于网络模型的训练和测试。实验测试结果表明,与Omni-SR算法相比,本文所提出算法在参数量减少32。3%、运行时间减少17。74%的同时,其重建图像的质量在客观指标和主观感受上均优于其他对比算法,且在放大倍数为4时,PSNR和SSIM的平均值在CAID数据集上分别提高了0。72 dB和0。012 2,在公共数据集上分别提高了 0。13 dB和0。004 4。
Super resolution reconstruction of coronary angiography images based on the omnidirectional deep weighted lightweight network
To meet the requirement of clear texture of coronary angiography images in interventional surgery,this article proposes a super-resolution image reconstruction method based on the omnidirectional deep weighted and lightweight network.Firstly,the local convolution module is designed to reduce the dimension of the feature map to reduce its parameter quantity and speed up the processing speed of the model.Then,the self-attention mechanism module is used to fuse the channel and spatial information of the image to obtain the rich high-frequency detail features of the image.In addition,to further extract the deep feature information of the image,a cascade and weight matching layer attention structure is designed to assign different weights to the features of different depths of the image to realize the super-resolution reconstruction of the image.Finally,to make the method have a stronger generalization ability in real interventional coronary angiography images,a coronary angiography image dataset(CAID)is constructed for training and testing the network model.The experimental results show that,compared with the Omni-SR algorithm,the proposed algorithm reduces the number of parameters by 32.3%and the running time by 17.74%.Meanwhile,the quality of the reconstructed image is better than other comparison algorithms in terms of objective indicators and subjective feelings.The average values of PSNR and SSIM are increased by 0.72 dB and 0.0122 on the CAID dataset,and 0.13 dB and 0.004 4 on the public dataset,respectively.

coronary angiography imagessuper resolution reconstructionlocal convolutionattention mechanismlight weight

张博伟、何彦霖、王康、黄宇辰、祝连庆

展开 >

北京信息科技大学光电测试技术与仪器教育部重点实验室 北京 100192

北京信息科技大学广州南沙光子感知技术研究院 北京 511462

冠脉造影图像 超分辨率重建 局部卷积 注意力机制 轻量化

国家自然科学基金

61903041

2024

仪器仪表学报
中国仪器仪表学会

仪器仪表学报

CSTPCD北大核心
影响因子:2.372
ISSN:0254-3087
年,卷(期):2024.45(7)