仪器仪表学报2024,Vol.45Issue(7) :210-217.DOI:10.19650/j.cnki.cjsi.J2312318

基于胃部肿瘤病理数据特征提取的分型模型研究

Research on feature classification model based on pathological data of gastric tumor

张建 宋志刚 王书浩 付哲铭 王磊
仪器仪表学报2024,Vol.45Issue(7) :210-217.DOI:10.19650/j.cnki.cjsi.J2312318

基于胃部肿瘤病理数据特征提取的分型模型研究

Research on feature classification model based on pathological data of gastric tumor

张建 1宋志刚 2王书浩 3付哲铭 1王磊1
扫码查看

作者信息

  • 1. 北京航空航天大学自动化科学与电气工程学院 北京 100191
  • 2. 中国人民解放军总医院病理科 北京 100853
  • 3. 北京透彻未来科技有限公司透彻实验室 北京 100036
  • 折叠

摘要

胃癌的早期发现和组织病理的精准分型可有效提高患者的5年生存率,但有限的医疗资源难以满足这一需求.基于ResNet-50的DeepLab v3语义分割算法,构建了胃部肿瘤病理分型识别系统,辅助病理医生实现快速高效精准的协同分型诊断.针对不含恶性肿瘤的情况,完善实现了胃部低级别上皮内瘤变的二分类识别.医院临床及资深医师像素级标注的1 854张胃部组织数字切片进行了训练和测试,实现了在癌区识别基础上准确率为61.8%、kappa=0.496的分型诊断和敏感度100%、特异性75.8%和AUC=0.972的低级别上皮内瘤变诊断.提出的胃癌分型诊断能够标出癌区,并给出诊断参考;低级别上皮内瘤变的诊断较为精确.

Abstract

The early detection and precise pathological classification of gastric cancer can effectively improve the possibility of cure,posing higher demands on limited medical resources.In response to the various sources of classification for gastric cancer and the shortage of pathologists,this paper,for the first time,constructs a gastric tumor pathological classification recognition system using the ResNet-50-based DeepLab v3 semantic segmentation algorithm.This system assists pathologists in achieving rapid,efficient,and accurate collaborative diagnostic classification.For cases without malignant tumors,this paper also implements the binary classification recognition of low-grade intraepithelial neoplasia in the stomach.After training and testing on 1854 digitally annotated slices of gastric tissue from the Chinese PLA General Hospital,pixel-level annotated by experienced physicians,the system achieved a classification diagnosis accuracy of 61.8%with a kappa value of 0.496 for cancer zone identification.For low-grade intraepithelial neoplasia diagnosis,it attained a sensitivity of 100%,a specificity of 75.8%,and an AUC of 0.972.This paper presents the first implementation of gastric cancer classification diagnosis,capable of identifying cancerous areas and providing diagnostic references.Additionally,the system demonstrates high sensitivity and relatively accurate results for diagnosing low-grade intraepithelial neoplasia.

关键词

胃部肿瘤/胃癌分型/特征提取/深度学习/病理诊断

Key words

gastric tumors/gastric cancer classification/feature extraction/deep learning/pathological diagnosis

引用本文复制引用

基金项目

青海省2023年第1批科技计划(基础研究计划项目)(2023-ZJ-732)

出版年

2024
仪器仪表学报
中国仪器仪表学会

仪器仪表学报

CSTPCD北大核心
影响因子:2.372
ISSN:0254-3087
参考文献量2
段落导航相关论文