首页|基于无人机航拍的风力发电机叶片表面缺陷检测综述

基于无人机航拍的风力发电机叶片表面缺陷检测综述

扫码查看
风力发电在能源转型中占重要地位.风力发电机叶片是接收风能的关键部件,其缺陷检测是维持发电机运行的基本保障.无人机航拍与机器视觉的结合能有效检测叶片表面缺陷.本文综述了近年来基于无人机航拍的风力发电机叶片表面缺陷检测方法.首先概述了风力发电机叶片特点与缺陷分类.其次对比了4类风力发电机叶片表面缺陷检测方法,阐明了无人机航拍结合视觉检测方法的优势及技术流程.然后概述了基于传统图像处理与机器学习的航拍叶片表面缺陷检测方法,包括表面图像拼接、缺陷的分割和特征提取与分类方法.综述了基于深度学习的航拍叶片表面缺陷检测方法,包含缺陷分类、识别与分割的深度学习网络.随后梳理了叶片表面缺陷数据集以及性能评价指标.最后指出该领域面临的挑战并对其解决方法进行了展望.
Review of wind turbine blade surface defect detection based on UAV aerial photography
Wind power is crucial for the energy transition. Wind turbine blades,which capture wind energy,require effective defect detection to ensure reliable operation. The integration of drone aerial photography and machine vision can efficiently detect surface defects on these blades. This paper reviews recent developments in drone-based wind turbine blade defect detection. It begins with an overview of blade characteristics and defect types. Four detection methods are compared,highlighting the advantages and technical processes of drone-visual inspection. Traditional image processing and machine learning methods for image stitching,defect segmentation,and feature extraction are summarized,alongside deep learning approaches for defect classification,recognition,and segmentation. Relevant datasets and performance metrics are organized,and the paper concludes by identifying challenges and discussing potential solutions.

UAV aerial photographywind power bladesdefect detectionmachine visiondeep learningdatasets

宋晔、吴一全

展开 >

南京航空航天大学电子信息工程学院 南京 211106

无人机航拍 风力发电机叶片 缺陷检测 机器视觉 深度学习 数据集

2024

仪器仪表学报
中国仪器仪表学会

仪器仪表学报

CSTPCD北大核心
影响因子:2.372
ISSN:0254-3087
年,卷(期):2024.45(10)