首页|热膨胀效应修正流量偏差促进时序神经网络精准侦测溢流研究

热膨胀效应修正流量偏差促进时序神经网络精准侦测溢流研究

扫码查看
随着油气钻井日益向深部地层以及复杂地层发展,传统的溢流钻井事故监测凸显滞后性和多解性,复杂的地层情况和井下高温高压,导致流量计量产生偏差,这是造成溢流识别精度的主要问题之一,针对计量偏差问题,利用泥浆热膨胀效应,构建了一种流量修正模型,攻克非溢流影响因素,修正计量偏差.其次在修正流量数据的基础上,建立了多元数据融合与时序神经网络相结合的溢流识别预警模型,该模型的溢流漏报次数为0,溢流及时率相较于常规监测手段得到了较大的提升,可提前约5 min发出预警,在钻井作业工程中,具有较大的应用价值和前景.
Flow deviation correction through the thermal expansion effect enhances the precise detection of overflow in time-series neural networks
As oil and gas drilling advances into deeper and more complex formations,traditional methods for monitoring overflow accidents show delays and offer multiple potential solutions. The challenging formation conditions,along with high temperature and pressure underground,result in flow measurement deviations,which significantly affect the accuracy of overflow detection. To address this issue,a flow correction model was developed,accounting for the thermal expansion of mud to correct these deviations by mitigating non-overflow influencing factors. Furthermore,based on the corrected flow data,an overflow identification and warning model was established using multivariate data fusion and a temporal neural network. This model eliminates missed overflow reports and significantly improves the timely detection rate compared to conventional methods. It can provide warnings up to 5 minutes in advance,offering substantial application value and potential in drilling operations.

thermal expansion effectoverflow identificationcorrected flowtemporal neural network

梁海波、杨梓为、耿捷、刘名杨

展开 >

西南石油大学机电工程学院 成都 610000

中国石油乍得公司 恩贾梅纳 999052

热膨胀效应 溢流识别 修正流量 时序神经网络

2024

仪器仪表学报
中国仪器仪表学会

仪器仪表学报

CSTPCD北大核心
影响因子:2.372
ISSN:0254-3087
年,卷(期):2024.45(10)