首页|基于决策树与长短时记忆神经网络的低压分布式光伏发电功率预测系统研究

基于决策树与长短时记忆神经网络的低压分布式光伏发电功率预测系统研究

扫码查看
针对低压分布式光伏"可观-可测-可调-可控"能力较弱的问题,本文从低压分布式光伏发电功率预测的角度,基于轻量梯度提升决策树和长短时记忆神经网络方法提出交叉监督训练模型,建立了地区低压分布式光伏总发电功率的预测算法,在短期和中期预测上达到或超过了目前对集中式光伏电站及中压级分布式光伏的发电功率预测质量.本文提出的低压分布式光伏发电功率预测系统可为电网调度提供重要参考,有利于提升可再生能源消纳水平,保障供电可靠性和电网安全稳定运行.
Low-voltage Distributed Photovoltaic Power Forecasting System Based on Decision Tree and Short-duration Memory Neural Network
Addressing the issue of weak"observability,measurability,adjustability,and controllability"in low-voltage distributed photovoltaics,this paper proposes a cross-supervised training model based on a lightweight gradient boosting decision tree and a long short-term memory neural network method from the perspective of low-voltage distributed photovoltaic power generation forecasting.The model establishes a forecasting algorithm for the total power generation of regional low-voltage distributed photovoltaics,achieving or exceeding the current quality of power generation forecasting for centralized photovoltaic power stations and medium-voltage distributed photovoltaics in both short-term and medium-term predictions.The proposed low-voltage distributed photovoltaic power generation forecasting system can provide an important reference for power grid scheduling,contributing to enhancing the consumption level of renewable energy and ensuring the reliability and safe and stable operation of the power grid.

photovoltaic power generationlow-voltage distributedlong short-term memory neural network

张韩婧

展开 >

郑州大学管理学院,河南郑州 450001

光伏发电 低压分布式 记忆神经网络

2024

仪器仪表用户
天津仪表集团有限公司,中国仪器仪表学会节能技术应用分会

仪器仪表用户

影响因子:0.255
ISSN:1671-1041
年,卷(期):2024.31(2)