首页|基于CNN的互感器多参数在线检测系统设计

基于CNN的互感器多参数在线检测系统设计

扫码查看
互感器是电力系统中的关键设备,主要用于测量和保护.然而,在长期运行过程中,互感器容易受到环境、温度、湿度等多种因素的影响,导致其性能下降,甚至发生故障.为了保证互感器的正常运行,需要对互感器进行实时监测和故障诊断.传统的互感器监测方法主要依赖于人工经验,效率低下且容易误诊,故提出基于卷积神经网络(后简写为CNN)的互感器多参数在线检测系统,通过实时采集互感器的关键参数,结合CNN强大的特征提取和分类能力,实现对互感器状态的实时监测和故障诊断.
Design of Multi-parameter On-line Detecting System for Transformer Based on CNN
Transformers are crucial devices in the power system,primarily used for measurement and protection.However,during long-term operation,transformers are susceptible to various factors such as the environment,temperature,and humidity,leading to performance degradation or even failures.To ensure the normal operation of transformers,real-time monitoring and fault diagnosis are necessary.Traditional transformer monitoring methods mainly rely on manual experience,which is inefficient and prone to misdiagnosis.Therefore,a transformer multi-parameter online detection system based on Convolutional Neural Networks(CNN)is proposed.By collecting key parameters of transformers in real-time and combining the powerful feature extraction and classification capabilities of CNN,the system can achieve real-time monitoring and fault diagnosis of transformer status.

transformerconvolutional neural networkmulti-parameter online detectionfault diagnosis

孙军、贾芳艳、胡利峰、曾园园、陈江洪

展开 >

武汉磐电科技股份有限公司,湖北武汉 430100

互感器 卷积神经网络 多参数在线检测 故障诊断

2024

仪器仪表用户
天津仪表集团有限公司,中国仪器仪表学会节能技术应用分会

仪器仪表用户

影响因子:0.255
ISSN:1671-1041
年,卷(期):2024.31(3)