首页|基于深度学习的船舶检测算法研究

基于深度学习的船舶检测算法研究

扫码查看
随着海洋运输业的发展,海上安全问题日益凸显,水面船舶的自动化检测尤为重要.本文研究了基于深度学习的船舶检测方法,通过对YOLOv7-tiny模型进行改进,在网络中引入了CBAM(Convolutional Block Attention Module)注意力机制和改进检测头部网络的结构,提高了模型对船舶检测的准确性.实验结果表明,采用改进后的模型对船舶检测和识别的准确率达到了98.7%,可以准确高效地执行海上船舶的自动化检测.
Research on Ship Detection Algorithm Based on Deep Learning
With the development of the marine transportation industry,offshore safety issues have increasingly become prominent,highlighting the significance of automated detection for surface vessels.This article investigates a ship detection method based on deep learning.By enhancing the YOLOv7-tiny model,the CBAM(Convolutional Block Attention Module)attention mechanism is introduced into the network,along with improvements in the structure of the detection head network,thereby increasing the model's accuracy for ship detection.Experimental results demonstrate that the adoption of the improved model achieves a ship detection and recognition accuracy rate of 98.7%,enabling accurate and efficient automated detection of offshore vessels.

deep learningoffshore safetyYOLOv7-tinyship detection

程畅

展开 >

哈尔滨师范大学物理与电子工程学院,黑龙江哈尔滨 150025

深度学习 海上安全 YOLOv7-tiny 船舶检测

2024

仪器仪表用户
天津仪表集团有限公司,中国仪器仪表学会节能技术应用分会

仪器仪表用户

影响因子:0.255
ISSN:1671-1041
年,卷(期):2024.31(4)