首页|衍生高效用模式挖掘算法综述

衍生高效用模式挖掘算法综述

扫码查看
在数据挖掘领域中,高效用模式挖掘任务具有较高的理论研究价值和广泛的实际应用场景.针对多变的应用场合,提出了一系列衍生高效用模式.首先从关键技术的角度对高平均效用模式挖掘算法进行了分类论述,主要包括基于先验、基于树、基于列表、基于投影和基于数据格式的方法.其次,分析讨论了基于全集、精简集以及融合模式的含有负效用的高效用模式挖掘算法.再次,从模糊高效用模式、相关高效用模式和其他新兴高效用模式三个方面概述和总结了扩展高效用模式算法.最后,针对现阶段研究方向的不足,给出下一步的研究方向.
Survey of derived high utility pattern mining algorithms
In the field of data mining,the task of high utility pattern mining has a high theoretical research value and a wide range of practical application scenarios.A series of derived high utility patterns are proposed for variable applications.Firstly,the high average utility pattern mining algorithms are discussed from the perspective of key technologies,mainly including Apriori-based,tree-based,list-based,projection-based and data structure-based algorithms.Secondly,high utility pattern mining algorithms containing negative utility based on complete set,concise set and integrated pattern are analytically discussed.Then,the extended high utility pattern algorithms are outlined and summarized from three aspects,including fuzzy high utility patterns,correlated high utility patterns and other emerging high utility patterns.Finally,in view of the shortcomings of the current research direction,the next research directions are given.

derived high utility patternhigh average utility patternnegative utilityfuzzy high utility patterncorrelated high utility patternsurvey

刘淑娟、韩萌、高智慧、穆栋梁、李昂

展开 >

北方民族大学 计算机科学与工程学院,宁夏 银川 750021

衍生高效用模式 高平均效用模式 负效用 模糊高效用模式 相关高效用模式 综述

国家自然科学基金宁夏回族自治区自然科学基金

620620042022AAC03279

2024

燕山大学学报
燕山大学

燕山大学学报

CSTPCD北大核心
影响因子:0.298
ISSN:1007-791X
年,卷(期):2024.48(2)
  • 89