首页|基于聚类与稀疏字典学习的近似消息传递

基于聚类与稀疏字典学习的近似消息传递

扫码查看
基于传统字典学习的近似消息传递(approximate message passing,AMP)算法对训练样本数量的需求较高,且运算成本较高.本文引入双稀疏模型,构建基于稀疏字典学习的AMP框架,降低迭代过程中字典学习对训练样本数量的需求,提高压缩感知图像重建的质量与效率.进一步,提出基于聚类与稀疏字典学习的AMP算法,在迭代过程中依据图像块特征进行分类,并为各类图像块分别学习稀疏字典,实现自适应去噪.与基于传统字典学习的AMP算法相比,基于聚类与稀疏字典学习的AMP 算法能够将重建图像的峰值信噪比提高0.20~1.75 dB,并且能够将运算效率平均提高 89%.
Clustering and sparse dictionary learning based approximate message passing
Dictionary learning based approximate message passing(AMP)has a high demand on the number of training samples,and its computational cost is high.The double sparse model is introduced to study sparse dictionary learning based AMP,which reduces the demand on the number of training samples in the iterations and improves imaging quality and efficiency.Furthermore,the clustering and sparse dictionary learning based AMP is proposed.In iterations,the clustered blocks are denoised adaptively with sparse dictionary learning.In comparison to traditional dictionary learning based AMP,the clustering and sparse dictionary learning based AMP can achieve 0.20~1.75 dB higher peak signal-to-noise ratio of the reconstructed images,and improve the computational efficiency by 89%in average.

image reconstructionapproximate message passingdictionary learningsparse dictionaryclustering

司菁菁、王亚茹、王爱婷、程银波

展开 >

燕山大学 信息科学与工程学院,河北 秦皇岛 066004

燕山大学 河北省信息传输与信号处理重点实验室,河北 秦皇岛 066004

河北农业大学 海洋学院,河北 秦皇岛 066003

图像重构 近似消息传递 字典学习 稀疏字典 聚类

河北省自然科学基金燕山大学基础创新科研培育项目河北省重点实验室项目

F20212030272021LGZD011202250701010046

2024

燕山大学学报
燕山大学

燕山大学学报

CSTPCD北大核心
影响因子:0.298
ISSN:1007-791X
年,卷(期):2024.48(2)
  • 23