首页|滑坡位移CEEMD-CIWOA-BP预测模型

滑坡位移CEEMD-CIWOA-BP预测模型

扫码查看
为了直观地判断滑坡因素与周期项位移间的因果关系,并提高滑坡位移预测模型的准确性,以某矿山滑坡位移监测数据为例,建立了考虑时滞的CEEMD-CIWOA-BP滑坡位移预测模型。首先利用CEEMD方法将滑坡位移监测数据分解成多个信号分量及res分量,将其重构为滑坡趋势项及周期项位移;然后引入Cubic混沌映射及惯性权重因子对WOA算法优化,利用优化的WOA算法对BP神经网络模型的连接权重及偏置项进行赋值;考虑到降雨及库水位对滑坡位移的时滞效应,利用Granger因果检验法确定降雨及库水位与周期位移的因果关系并引用MIC法确定时滞期数,使用CIWOA-BP模型分别对周期位移进行预测;最后,将各分量结果叠加得到滑坡位移累计预测值,对模型的预测精度进行评价。结果显示,本文提出的CEEMD-CIWOA-BP模型的性能优于其他模型,验证了所建模型的可行性。本文提出的模型能为滑坡灾害预警预报提供一定的参考。
Landslide displacement CEEMD-CIWOA-BP prediction model
To intuitively determine the causal relationship between landslide factors and period term displacements,and to improve the accuracy of the landslide displacement prediction model.The CEEMD-CIWOA-BP landslide displacement prediction model considering time lag was established by taking landslide displacement monitoring data of a mine as an example.Firstly,the landslide displacement monitoring data were decomposed into multiple signal components and res components by the CEEMD method,and reconstructed into landslide trend term and period term displacements.Then,the Cubic chaotic mapping and inertia weight factor were introduced to optimize the WOA algorithm,and the optimized WOA algorithm was used to assign values to the connectivity weight and bias term of the BP neural network model.Considering the time lag effect of rainfall and reservoir water level on landslide displacement,the Granger causality test was used to determine the causal relationship between rainfall and reservoir water level and cycle displacement,and the MIC method was used to determine the number of time lag periods,and the cycle displacement was predicted using the CIWOA-BP model.Finally,the results of the components were superimposed to obtain the cumulative predicted value of the landslide displacement,and the prediction accuracy of the model was evaluated.The results show that the performance of the CEEMD-CIWOA-BP model proposed in this paper was better than that of other models,and the feasibility of the proposed model was verified.The model proposed in this paper can provide certain reference value for landslide disaster early warning and prediction.

landslide displacementcomplementary ensemble empirical mode decompositionBP neural networkimproved whale optimization algorithmtime series

余国强、侯克鹏、孙华芬

展开 >

昆明理工大学 国土资源工程学院,昆明 650093

云南省中-德蓝色矿山与特殊地下空间开发利用重点实验室,昆明 650093

滑坡位移 互补集合经验模态分解 BP神经网络 改进鲸鱼优化算法 时间序列

2025

有色金属(矿山部分)
北京矿冶研究总院

有色金属(矿山部分)

影响因子:0.779
ISSN:1671-4172
年,卷(期):2025.77(1)