首页|基于WOA-SVM模型的边坡安全系数预测

基于WOA-SVM模型的边坡安全系数预测

扫码查看
由于边坡失稳对人们的生命财产造成的威胁日益突出,所以对边坡的稳定性进行评价对于边坡灾害防治具有重要意义,而在使用传统的支持向量机模型对边坡安全系数进行估算时,其精度较低、收敛性较差,对边坡安全系数估算的误差也就比较大。所以针对此类问题,采用了鲸鱼优化算法来对支持向量机(SVM)模型进行优化,使用WOA来寻找SVM的最佳惩罚系数c和核函数参数g,由此建立WOA-SVM模型,并将优化后的WOA-SVM模型用来对边坡安全系数进行预测,以达到提高估算边坡安全系数准确性的目的。结果显示,WOA-SVM模型的平均绝对误差(MAE)、均方根误差(RMSE)和平均绝对百分比误差(MAPE)均优于其他模型,说明对边坡安全系数估算的精确度要高于其他模型,所以该模型对于边坡稳定性分析有一定的参考价值。
Prediction of slope safety factor based on WOA-SVM model
Because the threat of slope instability to people's life and property is increasingly prominent,the evaluation of slope stability is of great significance for slope disaster prevention and control.When the traditional support vector machine model is used to estimate the slope safety factor,its accuracy is low,its convergence is poor,and the error of slope safety factor estimation is relatively large.Therefore,aiming at such problems,the whale optimization algorithm was adopted to optimize the support vector machine(SVM)model.WOA was used to find the optimal penalty coefficient c and kernel function parameter g of SVM,and the WOA-SVM model is established.The optimized WOA-SVM model was used to predict the slope safety factor,so as to achieve the purpose of improving the accuracy of slope safety factor estimation.The results showed that the mean absolute error(MAE),root mean square error(RMSE)and mean absolute percentage error(MAPE)of the WOA-SVM model were better than those of other models,indicating that the accuracy of slope safety factor estimation was higher than that of other models.Therefore,this model has certain reference value for slope stability analysis.

slope safety factorwhale optimization algorithmsupport vector machinesforecastslope stability

程子鉴、陈星明、安英东、陈帮洪、李正国、王文通

展开 >

西南科技大学 环境与资源学院,四川 绵阳 621010

边坡安全系数 鲸鱼优化算法 支持向量机 预测 边坡稳定性

2025

有色金属(矿山部分)
北京矿冶研究总院

有色金属(矿山部分)

影响因子:0.779
ISSN:1671-4172
年,卷(期):2025.77(1)