首页|基于PCA-NIPSO-SVM组合的铜锍中锑含量预测模型

基于PCA-NIPSO-SVM组合的铜锍中锑含量预测模型

扫码查看
铜锍是造锍熔炼的产物,同时也是吹炼生产粗铜的原料,锑作为铜锍中很难脱除的杂质,其含量的控制对铜品位、火法精炼阳极炉寿命、电解精炼阴极板质量等均具有重要影响.鉴于目前铜冶炼中有关锑含量控制预测研究较少、特征选取和预测结果较差等问题,提出了多种算法组合并优化的支持向量机模型.使用灰色关联分析(GRA)和主成分分析(PCA)对特征参数进行筛选和降维,并融合改进Sine混沌映射的新型粒子群算法(NIPSO)对支持向量机(SVM)进行优化,最后根据冶炼数据进行测试、训练和预测.实验结果显示PCA-NIPSO-SVM相较于PCA-PSO-SVM、PSO-SVM和SVM对锑的预测性能有较大提升,其评价指标MAE、MSE和RMSE分别为0.011 815 5、0.000 225 6及0.015 019 7.基于改进Sine混沌映射粒子群算法优化的支持向量机预测模型能够较好地预测铜锍中锑的含量,为氧气底吹炼铜的配料方案和工艺控制提供借鉴.
Prediction Model of Antimony Content in Copper Matte Based on PCA-NIPSO-SVM
Copper matte is the product of matte smelting and also the raw material for the production of blister copper through converting processes.Antimony,as a difficult-to-remove impurity in copper matte,significantly influences the grade of copper,the lifespan of anode furnaces in pyrometallurgical refining,and the quality of cathode plates in electrolytic refining.Given the limited research on predictive control of antimony content in copper smelting,and issues such as poor feature selection and prediction results,a predictive model for antimony content in copper matte was developed,utilizing Principal Component Analysis(PCA)and Support Vector Machine(SVM).The model utilized Grey Relational Analysis(GRA)and Principal Component Analysis(PCA)for feature selection and dimensionality reduction,and integrated with a Novel Improved Particle Swarm Optimization(NIPSO)algorithm enhanced by an improved Sine chaos map for SVM optimization.The model was tested,trained,and validated using metallurgical data.Experimental results demonstrate that the PCA-NIPSO-SVM model significantly outperforms PCA-PSO-SVM,PSO-SVM,and standard SVM in predicting antimony content.The evaluation metrics-Mean Absolute Error(MAE),Mean Squared Error(MSE),and Root Mean Square Error(RMSE)—are 0.011 815 5,0.000 225 6,and 0.015 019 7 respectively.This SVM model,optimized with the improved Sine chaos map-based particle swarm algorithm,effectively predicts the antimony content in copper matte,providing valuable insights for ingredient planning and process control in oxygen bottom-blown copper smelting.

antimonyparticle swarm optimizationgrey relational analysissupport vector machinesine chaos mapping

李林波、刘子杨、杨建军、王昭峰、崔雅茹、段中兴、陈毅鹏

展开 >

西安建筑科技大学冶金工程学院,西安 710055

西安建筑科技大学信息与控制工程学院,西安 710055

国投金城冶金有限责任公司,河南灵宝 472500

粒子群算法 灰色关联分析 支持向量机 Sine混沌映射

2024

有色金属工程
北京矿冶研究总院

有色金属工程

CSTPCD北大核心
影响因子:0.432
ISSN:2095-1744
年,卷(期):2024.14(11)