首页|基于槽电阻的稀土熔盐电解过程氧化物浓度预测研究

基于槽电阻的稀土熔盐电解过程氧化物浓度预测研究

扫码查看
氧化物浓度是稀土熔盐电解的一个重要参数,直接影响电解的效率和产品质量.本文提出一种稀土熔盐电解过程中氧化物浓度的软测量方法,基于槽电阻与氧化稀土浓度间的关系曲线,通过跟踪槽电阻变化间接测量氧化物的浓度.对电解槽内电阻进行采样,根据不同时刻的槽电阻、槽电阻斜率、槽电阻累积斜率以及是否添加物料,构建基于 BP神经网络的槽电阻预测模型,进而对稀土熔盐电解过程中氧化物浓度做出预测.仿真结果表明,使用BP神经网络可以对槽电阻进行有效预测,实时获得氧化稀土浓度状态.研究结果可为实现稀土熔盐电解智能化升级改造提供一定的理论依据.
Prediction of Oxide Concentration in Rare Earth Molten Salt Electrolysis Process Based on Tank Resistance
Oxide concentration is an important parameter in rare earth molten salt electrolysis,which directly affects the electrolysis efficiency and product quality.A soft measurement method of oxide concentration in the electrolytic process of rare earth molten salt is proposed.Based on the relationship curve between tank resistance and rare earth oxide concentration,the method indirectly mea-sures oxide concentration by tracking the change of tank resistance.Sampling of the resistance in the electrolytic cell,based on the cell resistance at different moments,the slope of the tank resistance,the cumulative slope of the tank resistance,and whether or not material is added.Building a tank resistance prediction model based on BP neural network to predict oxide concentration during rare earth molten salt electrolysis process.The simulation results show that the BP neural network can effectively predict the tank resis-tance and obtain the oxide concentration state in real time.The research results can provide a theoretical basis for the realization of intelligent upgrading of rare earth molten salt electrolysis.

molten salt electrolysistank resistancerare earth oxide concentrationBP neural network

杨培绿、王新春

展开 >

包头瑞鑫稀土金属材料有限公司,内蒙古 包头 014030

内蒙古科技大学 信息工程学院,内蒙古 包头 014010

熔盐电解 槽电阻 稀土氧化物浓度 BP神经网络

国家重点研发计划

2023YFB3506800

2024

有色矿冶
辽宁省有色金属学会

有色矿冶

影响因子:0.251
ISSN:1007-967X
年,卷(期):2024.40(2)
  • 14