首页|基于深度学习的隧道微震监测及岩爆预警技术与系统研究

基于深度学习的隧道微震监测及岩爆预警技术与系统研究

扫码查看
针对隧道工程建设中微震监测信息处理智能化不高、隧道三维可视化信息不全和隧道岩爆灾害预警难等亟待解决的问题,采用微震监测、深度学习和虚拟仿真技术,建立隧道微震信息自动一体化处理及岩爆智能预警技术体系与系统平台.提出基于双模态特征提取的微震多分类模型,建立基于深度卷积编解码网络的波形降噪-到时拾取双任务模型以及基于引力搜索法的微震定位算法,实现隧道微震分类-降噪-拾取-定位-震源参数计算的自动、高效、准确处理;选取累积视体积和能量指数震源参数作为关键指标,建立基于LSTM多变种网络的微震参数平行序列预测模型和岩爆孕育阶段判识预警模型,实现岩爆当前-未来状态时效演化的预警.同时,基于三维可视化框架Cesium实现隧址地理信息、地质模型、隧道模型、灾害(微震)信息的集成与显示,形成微震信息采集模块、微震信息云处理模块、岩爆预测预警模块于一体的隧道微震监测与岩爆预警系统.将系统应用于峨汉高速公路大峡谷隧道岩爆灾害段,实现海量微震数据的自动、高效、准确处理,验证隧道微震信息自动一体化处理及岩爆智能预警技术体系的有效性.
Research of technology and system of tunnel microseismic monitoring and rockburst early warning based on deep learning
Relying on microseismic monitoring,deep learning and virtual simulation technology,a system and platform for the automatic integrated processing of tunnel microseismic information and intelligent warning of rock bursts is established in this paper.Both a microseismic multi-classification model based on bimodal feature extraction,and a dual-task model of noise reduction and arrival pickup of a waveform based on deep convolutional encoding and decoding network are proposed,and a microseismic positioning algorithm based on the gravity search method is put forward,for realizing automatic,efficient and accurate processing of tunnel microseismic classification,noise reduction,picking,positioning and source parameter calculation.Selecting cumulative apparent volume and energy index source parameters as key indicators,a parallel sequence prediction model for microseismic parameters and a prediction and warning model for rock burst incubation stage based on LSTM multi-variant network are established,which achieves early warning of the current future state and time evolution of rock bursts.Meanwhile,the integration and display of tunnel site geographic information,geological models,tunnel models and disaster(microseismic)information are achieved based on the three-dimensional visualization framework Cesium,forming a tunnel microseismic monitoring and rock burst warning system that integrates microseismic information collection module,microseismic information cloud processing module,and rock burst prediction and warning module.The system is applied to the rock burst disaster section of the Daxiagu Tunnel of Ehan Expressway,achieving automatic,efficient and accurate processing of massive microseismic data,and verifying the effectiveness of the automatic integrated processing of tunnel microseismic information and the intelligent warning technology system for rock bursts.

rock mechanicstunnelmicroseismic monitoringrockburst warningdeep learningvirtual simulation

李天斌、许韦豪、马春驰、张航、张彧轩、代坤坤

展开 >

成都理工大学地质灾害防治与地质环境保护国家重点实验室,四川成都 610059

成都理工大学环境与土木工程学院,四川成都 610059

重庆市城市建设投资(集团)有限公司,重庆 400023

岩石力学 隧道 微震监测 岩爆预警 深度学习 虚拟仿真

国家自然科学基金国家自然科学基金成都理工大学地质灾害防治与地质环境保护国家重点实验室项目

4213071942177173SKLGP2017Z001

2024

岩石力学与工程学报
中国岩石力学与工程学会

岩石力学与工程学报

CSTPCD北大核心
影响因子:2.589
ISSN:1000-6915
年,卷(期):2024.43(5)
  • 16