首页|花岗质岩浆作用及后期演化过程:来自矿物原位微区成分与同位素组成的制约

花岗质岩浆作用及后期演化过程:来自矿物原位微区成分与同位素组成的制约

扫码查看
花岗岩作为大陆地壳的重要组成部分,其岩浆作用过程一直是地学领域研究的热点.传统上利用全岩地球化学和同位素数据来示踪花岗岩成因和演化过程的方法已不够准确,为此,本文系统总结了近年来报导的花岗岩中单矿物的原位微区成分——这些数据记录了全岩数据无法识别的单矿物颗粒内部和不同矿物颗粒之间元素和同位素组成的变异特征,明显提高了对花岗质岩浆作用及后期演化过程的认识.首先,矿物原位微区成分对花岗质岩浆的源区性质和混合过程具有指示意义.花岗岩中岩浆锆石Hf同位素组成的变异可能暗示其源区在深熔作用过程中发生了锆石的不平衡和选择性熔融,而未必是壳幔混合作用的结果,这是对"锆石效应"概念新的扩展;同一花岗岩样品中分选出的磷灰石颗粒可以具有完全不同的稀土元素配分模式、Eu异常、Sr含量和Sr-Nd同位素组成等,表明它们中的部分颗粒是岩浆形成和上升过程中从围岩捕获的,是小规模地壳混染作用的产物;榍石的微区成分分带记录了多种岩浆混合过程,也反映了熔体成分、氧逸度和温度等因素的变化;花岗岩与其中发育的包体、捕虏体和相关围岩的锆石Hf-O同位素和磷灰石Sr-Nd同位素组成可以记录上述岩石在形成过程中经历岩浆混合和同化混染等作用.其次,矿物原位微区成分可以反映花岗质岩浆的分离结晶过程.岩浆成因磷灰石不同的稀土元素配分模式可能指示它们受到了其他矿物分离结晶作用的影响,如帘石族、榍石、角闪石、斜长石等;花岗伟晶岩系统中岩浆成因独居石Sm/Nd值在不同岩带中的规律性变化揭示了岩浆分离结晶程度的差异;榍石的多种微区元素含量和它们之间的协变关系受控于花岗质岩浆的结晶分异过程和氧化还原状态;岩浆成因绿帘石族矿物的震荡环带表明在绿帘石结晶的晚期阶段花岗质岩浆中的Fe3+含量降低,且结晶过程中褐帘石和绿帘石并不能形成完全连续的固溶体,因此晚期结晶的绿帘石环边与褐帘石核具有成分间断;根据角闪石的电子探针数据可以计算得到花岗质岩浆结晶时的温度、压力和fo2,并据此推断出岩浆起源的深度.此外,矿物原位微区成分可以记录花岗质岩石晚期经历的构造热事件和矿化作用过程.经历晚期变质/交代作用改造的花岗岩中的磷灰石具有低的轻稀土元素含量和变化很大的Nd同位素组成,导致花岗岩具有Nd-Hf位素体系解耦的特点;晚期变质/交代作用同样会改变磷灰石和榍石的δ18O值,造成各副矿物之间δ18O值相互解耦的现象;蚀变独居石的元素和U-Th-Pb同位素体系指示流体交代过程中多种置换反应的发生以及普通Pb混染和Pb丢失的过程;热液成因绿帘石族矿物的成分环带表明氧化环境下热液流体成分会不断演化,根据矿物-流体平衡模型,可以利用绿帘石成分计算出成矿作用发生的温度以及流体的pH值,研究表明绿帘石向流体中释放的大量Ca2+有效促进了硫化物矿床的成矿作用进程.综上,单矿物原位微区成分分析技术的不断提高使我们对花岗质岩浆作用及后期演化过程的认识有了很大进步,在未来的研究中,如何取长补短,将这些数据进行良好地运用是本领域的重要方向.
The magmatic and post-magmatic processes of granitic magma:Constraints from in situ element and isotope compositions of minerals
As an important conponent of continental crust,granitoid together with its magmatic processes have been hot issues in earth science study for a long time.The petrogenesis and evolution processes of granitoids were traditionally constrained by the whole-rock geochemical and isotopic data which become less precise at present.This paper systematically summarizes the in situ analyses data of minerals from granitoids reported in recent years which record not only the intra-but also the inter-mineral variations in elemental and isotopic compositions that are not evident from whole-rock geochemistry,and thus greatly advance the understanding of the magmatic and post-magmatic processes of granitoids.Firstly,in situ mineral composition is an indicator of source nature and mixing process of granitic magma.Significant Hf-isotope variations in magmatic zircons of granitoid may indicate a disequilibrium and preferential melting of zircon at the source,rather than a crust-mantle mixing origin,which extends the idea of"zircon effect"to crustal anataxis.The rare earth element(REE)patterns,Eu anomalies,Sr contents and Sr-Nd isotopic compositions of apatites from a single granitoid sample can be markedly different,indicating that some of the grains are captured from wall rocks during magma generation and ascent,and are products of small-scale crustal assimilation.The compositional zoning in the titanites records various magma-mixing processes and also reveals changes in melt composition,oxygen fugacity and temperature.Zircon Hf-O and apatite Sr-Nd isotopic compositions of granitoids and the enclaves/inclusions hosted in them,as well as the related wall rocks can record the magma mixing and assimilation processes during the formation of these rocks.Secondly,in situ mineral composition reflects the fractional crystallization process of granitic magma.Distinct REE patterns of magmatic apatites suggest the influence of fractional crystallization of other minerals,such as epidote-group,titanite,hornblende,and plagioclase.The regular change of Sm/Nd ratios in magmatic monazites from the granitic pegmatite system reveals the varying degrees of magma fractionation.Element contents and their co-variations of titanite may be controlled by fractionation process and oxygen fugacity of the granitic melt.Oscillatory zoning in magmatic epidote indicates that the granitic magma is depleted in Fe3+during the late stage of epidote crystallization,and there was no complete miscibility between allanite and epidote growth during the crystallization of magma.Thus,the allanite core and epidote rim are compositionally discontinuous.The composition of hornblende analyzed by Electron Probe Micro Analyzer can calculate the temperature,pressure and fo2at which the granitic magma crystallized,and the depth of the magma during generation can be inferred from the above parameters.Thirdly,in situ mineral composition records post-magmatic tectonothermal events and mineralization processes of granitoids.Apatites from granitoids altered by late stage metamorphic or metasomatic processes are characterized by low light REE contents and large variations in Nd isotopic compositions,and the apatite gNd(t)and zircon εHf(t)for most of the granitoid samples exhibit significant decoupling.δ18 O values of apatite and titanite are prone to be affected by metamorphism and/or fluid circulation,resulting in decoupling of δ18O in accessory minerals.The major and trace element compositions and U-Th-Pb isotopic systems of alterated monazites suggest that coupled substitutions and common Pb contamination and/or Pb loss may have occurred during fluid-aided modification.The compositional zoning patterns of hydrothermal epidote-group minerals indicate that the hydrothermal fluid evolves continuously under oxidizing conditions.The temperature of mineralization and pH condition of the ore fluid can be calculated by the composition of hydrothermal epidote using mineral-fluid equilibria modeling.Research shows that adequate quantities of Ca2+ions released by hydrothermal epidote into the fluid can promote the sulfide mineralization efficiently.To summarize,the improvements on analytical techniques of in situ compositions of minerals have advanced our understanding of the magmatic and post-magmatic processes of granitoids.In the future research,how to make good use of the above datasets and offer their complementary strengths will be an important direction in this field.

GranitoidMagmatic and post-magmatic processesIn situ mineral compositionSource natureFractional crystallization processMetamorphism and metasomatism

龙欣雨、唐杰、许文良

展开 >

吉林大学地球科学学院,长春 130061

自然资源部东北亚矿产资源评价重点实验室,长春 130061

花岗岩 岩浆和岩浆期后过程 矿物原位微区成分 源区性质 分离结晶过程 变质和交代作用

国家自然科学基金国家自然科学基金

U224420142072071

2024

岩石学报
中国矿物岩石地球化学学会,中国科学院地质地球物理研究所

岩石学报

CSTPCD北大核心
影响因子:2.74
ISSN:1000-0569
年,卷(期):2024.40(3)
  • 199