首页|基于改进NSGA-Ⅱ算法的铝电解工艺参数优化

基于改进NSGA-Ⅱ算法的铝电解工艺参数优化

Optimisation of aluminium electrolysis process parameters based on improved NSGA-Ⅱ algorithm

扫码查看
为提高电能的利用效率,降低铝电解的能耗,根据贵州某铝厂真实的生产数据,通过灰色关联分析法来选取影响铝电解能耗较大的7 个参数(槽电压U、电解温度Tb、下料间隔tNB、铝水平hm、电解质水平hg、分子比rm 和出铝量q),构建了以最大电流效率和最小吨铝能耗为多目标的铝电解工艺参数优化模型.采用改进非支配排序遗传算法(NSGA-Ⅱ),对比分析了60 组实际值与传统NSGA-Ⅱ算法及改进NSGA-Ⅱ算法理论值的差异,使用30 组实际生产数据验证了算法性能,利用MATLAB软件迭代计算得到了帕累托前沿.结果表明,改进 NSGA-Ⅱ 算法最优的一组电流效率为 95.66%,吨铝能耗为12424.54 kWh;与传统NSGA-Ⅱ算法相比,电流效率提升了 0.31%,吨铝能耗降低了 22.11 kWh,达到节能降耗效果,验证了改进NSGA-Ⅱ算法在提高铝电解工艺参数优化方面的有效性和适用性,可为铝电解节能优化和生产设计等提供参考.
To improve the utilization efficiency of electric energy and reduce the energy consumption of aluminium electrolysis,according to the real production data of an aluminium plant in Guizhou,the optimization model of aluminium electrolysis process parameters was constructed with the multi-objective of maximum current efficiency and minimum tonne of aluminium energy consumption by using the grey correlation analysis method to select the seven parameterswith significant impact,including cell voltage(U),electrolysis temperature(Tb),feed interval(tNB),aluminium level(hm),electrolyte level(hg),molecular ratio(rm)and out aluminum(q).The improved Non-dominated Sorting Genetic Algorithm(NSGA-Ⅱ)was used to compare and analyse the differences between 60 sets of actual values and the theoretical values of the traditionaland improved NSGA-Ⅱ algorithm,the performance of the algorithm was verified using 30 sets of actual production data,and the Pareto front was obtained by iterative calculations using MATLAB software.The results show that the optimal set of current efficiency of the improved NSGA-Ⅱ algorithm is 95.66%,and the energy consumption of tonnes of aluminium is 12424.54 kW·h;compared with the traditional NSGA-Ⅱ algorithm,the current efficiency is improved by 0.31%,and the energy consumption of tonnes aluminium is reduced by 22.11 kW·h,which achieves the effect of energy saving and consumption reduction,and verifies the effectiveness and applicability of the improved NSGA-Ⅱ algorithm in improving the optimization of the process parameters of aluminium electrolysis.It verifies the effectiveness and applicability of the improved NSGA-Ⅱ algorithm in improving the optimization of aluminium electrolysis process parameters,and can provide reference suggestions for the optimization of aluminium electrolysis energy saving and production design.

aluminium electrolysisenergy saving and noise reductionprocess parameters optimizationimproved NSGA-Ⅱ algorithmmaximum current efficiencyminimum tonne of aluminium energygrey correlation analysisrestraint condition

叶娇、徐杨、曹斌

展开 >

贵州大学 大数据与信息工程学院,贵州 贵阳 550025

中铝智能科技发展有限公司,浙江 杭州 311100

铝电解 节能降噪 工艺参数优化 改进NSGA-Ⅱ算法 最大电流效率 最小吨铝能耗 灰色关联分析 约束条件

2024

中国有色冶金
中国有色工程有限公司

中国有色冶金

北大核心
影响因子:0.369
ISSN:1672-6103
年,卷(期):2024.53(5)