首页|基于微震监测和概率优化朴素贝叶斯的短期岩爆预测模型

基于微震监测和概率优化朴素贝叶斯的短期岩爆预测模型

扫码查看
岩爆是地下岩土工程中常见的地压灾害.为实时准确地预测岩爆,提出一种基于微震监测和概率优化朴素贝叶斯的短期岩爆预测模型.首先,以114组岩爆样本数据为基础,结合相关特征选择算法选取累计微震事件数、累积微震能量、累积微震视体积和累积微震能量率4项微震参数作为预测指标.其次,为最大程度地削弱朴素贝叶斯算法的条件独立性假设,采用指标相关重要性赋权法和相似度函数从属性赋权和实例赋权两方面优化条件概率,并针对条件概率赋权后可能引起的决策失衡问题,引入马氏距离补偿先验概率损失,进而提出一种带有条件概率加权和先验概率补偿机制的概率优化朴素贝叶斯算法预测岩爆烈度等级.最后,从模型评估、模型比较和工程验证3个方面检验模型的准确性和可靠性.研究结果表明,所提模型预测准确率为86.96%,预测性能优于其他机器学习模型,可为实际工程的岩爆预测提供科学依据.
Short-term rockburst prediction model based on microseismic monitoring and probability optimization naive Bayes
Rockburst is a common ground pressure hazard in underground geotechnical engineering.To predict rockburst accurately in real-time,this study proposes a short-term rockburst prediction model based on microseismic monitoring and probability optimization naive Bayes.Firstly,based on 114 sets of rockburst sample data,four microseismic parameters were selected as predictors using the correlation feature selection algorithm:cumulative number of microseismic events,cumulative microseismic energy,cumulative microseismic apparent volume,and cumulative microseismic energy rate.Secondly,to weaken the conditional independence assumption of the naive Bayes algorithm,the criteria importance through intercriteria correlation method and the similarity function are used to optimize the conditional probability in terms of both attribute weighting and instance weighting.The Mahalanobis distance is introduced to compensate for the loss of prior probability,addressing the decision imbalance caused by conditional probability weighting.Thus,a probability optimization naive Bayes algorithm with conditional probability weighting and prior probability compensation mechanism is proposed to predict the rockburst intensity levels.Finally,the model's accuracy and reliability are tested through model evaluation,model comparison,and engineering validation.The results show that the proposed model has a prediction accuracy of 86.96%and outperforms other machine learning models,providing a scientific basis for rockburst prediction in practical engineering.

microseismic monitoringrockburst predictionnaive Bayesattribute weightinginstance weighting

孙嘉豪、王文杰、解联库

展开 >

武汉科技大学资源与环境工程学院,湖北武汉 430081

应急管理部信息研究院,北京 100029

微震监测 岩爆预测 朴素贝叶斯 属性权重 实例权重

国家自然科学基金湖北省安全生产专项科技项目国家自然科学基金-新疆联合基金

51974206KJZX202007007U1903216

2024

岩土力学
中国科学院武汉岩土力学研究所

岩土力学

CSTPCD北大核心
影响因子:1.614
ISSN:1000-7598
年,卷(期):2024.45(6)