首页|基于自动机器学习的岩爆烈度分级预测模型

基于自动机器学习的岩爆烈度分级预测模型

扫码查看
为了解决岩爆预测过程中人为因素影响过大与预测时间过长的问题,提出了一种基于自动机器学习的岩爆烈度分级预测模型.收集国内外岩爆案例样本构建数据,基于5个自动机器学习模型框架训练岩爆烈度分级预测模型,采用准确率、精确度、召回率、F1指标评价模型性能.与13种常见机器学习模型预测结果进行对比分析,得出AutoML框架构建的岩爆预测模型预测准确率远远高于13种传统机器学习算法构建的岩爆预测模型.其中,基于Auto-Sklearn框架构建的岩爆预测模型准确率高达0.969,基于Auto-Gluon框架构建的岩爆预测模型准确率在5个框架中最低,准确率也高达0.927.应用构建的模型预测晒旗河磷矿的岩爆发生情况,预测结果与现场情况一致,表明基于自动机器学习的岩爆烈度分级预测模型能够有效预测实际工程中的岩爆发生情况.
Rock burst intensity grading prediction model based on automatic machine learning
To address issues related to excessive human influence and prolonged prediction times in rockburst prediction,we propose a rockburst intensity classification prediction model based on automatic machine learning.This model is trained using five automatic machine learning frameworks and evaluated using metrics such as accuracy,precision,recall,and Fl-score.Subsequently,we compare the performance of this trained model with results from thirteen common machine learning models.The model developed with the Auto-Sklearn framework achieved a high accuracy of 0.969,while the model created with the Auto-Gluon framework,although having the lowest accuracy among the five frameworks,still achieved an accuracy of 0.927.Rockburst prediction models constructed using AutoML frameworks significantly outperformed traditional machine learning algorithms.The Auto-Sklearn-based model exhibited the highest accuracy.In summary,the optimized model was applied to predict rockburst events at the Shaiqi River phosphate mine,and the predictions were consistent with the actual observations on-site.This indicates that the automatic machine learning-based model for rockburst intensity classification prediction can accurately predict rockburst incidents in real-world engineering settings.

rockburstintensity gradingforecastautomatic machine learningalgorithm

贺隆平、姚囝、王其虎、叶义成、凌济锁

展开 >

武汉科技大学资源与环境工程学院,湖北武汉 430081

湖北东圣化工集团东达矿业有限公司,湖北宜昌 433000

岩爆 烈度分级 预测 自动机器学习 算法

湖北省重点研发计划项目湖北省安全生产专项资金科研项目

2020BCA082SJZX20211004

2024

岩土力学
中国科学院武汉岩土力学研究所

岩土力学

CSTPCD北大核心
影响因子:1.614
ISSN:1000-7598
年,卷(期):2024.45(9)